"Rankin-Selberg method"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==introduction== * The Rankin-Selberg method for studying Langlands' automorphic L-functions is to find integral representations, involving certain Fourier coefficients of cusp forms ...)
 
imported>Pythagoras0
4번째 줄: 4번째 줄:
  
 
==articles==
 
==articles==
 +
* Lin, Jie. “Period Relations for Automorphic Induction and Applications, I.” arXiv:1511.03517 [math], November 11, 2015. http://arxiv.org/abs/1511.03517.
 +
* Lin, Jie. “Special Values of Automorphic $L$-Functions for $GL_{n}\times GL_{n’}$ over CM Fields, Factorization and Functoriality of Arithmetic Automorphic Periods.” arXiv:1511.03519 [math], November 11, 2015. http://arxiv.org/abs/1511.03519.
 
* Kaplan, Eyal. “On the Local Theory of Rankin-Selberg Convolutions for $\mathrm{SO_{2l}\times GL_{n}}$.” arXiv:1506.05773 [math], June 18, 2015. http://arxiv.org/abs/1506.05773.
 
* Kaplan, Eyal. “On the Local Theory of Rankin-Selberg Convolutions for $\mathrm{SO_{2l}\times GL_{n}}$.” arXiv:1506.05773 [math], June 18, 2015. http://arxiv.org/abs/1506.05773.

2015년 11월 23일 (월) 00:39 판

introduction

  • The Rankin-Selberg method for studying Langlands' automorphic L-functions is to find integral representations, involving certain Fourier coefficients of cusp forms and Eisenstein series, for these functions.


articles

  • Lin, Jie. “Period Relations for Automorphic Induction and Applications, I.” arXiv:1511.03517 [math], November 11, 2015. http://arxiv.org/abs/1511.03517.
  • Lin, Jie. “Special Values of Automorphic $L$-Functions for $GL_{n}\times GL_{n’}$ over CM Fields, Factorization and Functoriality of Arithmetic Automorphic Periods.” arXiv:1511.03519 [math], November 11, 2015. http://arxiv.org/abs/1511.03519.
  • Kaplan, Eyal. “On the Local Theory of Rankin-Selberg Convolutions for $\mathrm{SO_{2l}\times GL_{n}}$.” arXiv:1506.05773 [math], June 18, 2015. http://arxiv.org/abs/1506.05773.