"Simple exclusion process"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로) |
imported>Pythagoras0 |
||
65번째 줄: | 65번째 줄: | ||
* [http://en.wikipedia.org/wiki/Tracy%E2%80%93Widom_distribution http://en.wikipedia.org/wiki/Tracy–Widom_distribution] | * [http://en.wikipedia.org/wiki/Tracy%E2%80%93Widom_distribution http://en.wikipedia.org/wiki/Tracy–Widom_distribution] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
96번째 줄: | 78번째 줄: | ||
==articles== | ==articles== | ||
− | + | * Tracy, C. A., and H. Widom. 1996. Proofs of two conjectures related to the thermodynamic Bethe Ansatz. Communications in Mathematical Physics 179, no. 3 (9): 667-680. doi:[http://dx.doi.org/10.1007/BF02100102 10.1007/BF02100102]. | |
* Lazarescu, Alexandre, 와/과Kirone Mallick. 2011. “An Exact Formula for the Statistics of the Current in the TASEP with Open Boundaries”. <em>1104.5089</em> (4월 27). http://arxiv.org/abs/1104.5089 . | * Lazarescu, Alexandre, 와/과Kirone Mallick. 2011. “An Exact Formula for the Statistics of the Current in the TASEP with Open Boundaries”. <em>1104.5089</em> (4월 27). http://arxiv.org/abs/1104.5089 . | ||
* '''[TW2007]'''Tracy, Craig A, and Harold Widom. 2007. Integral Formulas for the Asymmetric Simple Exclusion Process. 0704.2633 (April 19). doi:doi:[http://dx.doi.org/10.1007/s00220-008-0443-3 10.1007/s00220-008-0443-3]. http://arxiv.org/abs/0704.2633. | * '''[TW2007]'''Tracy, Craig A, and Harold Widom. 2007. Integral Formulas for the Asymmetric Simple Exclusion Process. 0704.2633 (April 19). doi:doi:[http://dx.doi.org/10.1007/s00220-008-0443-3 10.1007/s00220-008-0443-3]. http://arxiv.org/abs/0704.2633. | ||
* Family of Commuting Operators for the Totally Asymmetric Exclusion Process http://arxiv.org/abs/cond-mat/0612351 | * Family of Commuting Operators for the Totally Asymmetric Exclusion Process http://arxiv.org/abs/cond-mat/0612351 | ||
* Schütz, Gunter M. 1997. Exact solution of the master equation for the asymmetric exclusion process. Journal of Statistical Physics 88, no. 1 (7): 427-445. doi:[http://dx.doi.org/10.1007/BF02508478 10.1007/BF02508478]. | * Schütz, Gunter M. 1997. Exact solution of the master equation for the asymmetric exclusion process. Journal of Statistical Physics 88, no. 1 (7): 427-445. doi:[http://dx.doi.org/10.1007/BF02508478 10.1007/BF02508478]. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* Johansson, Kurt. 2000. Shape Fluctuations and Random Matrices. Communications in Mathematical Physics 209, no. 2 (2): 437-476. doi:[http://dx.doi.org/10.1007/s002200050027 10.1007/s002200050027]. | * Johansson, Kurt. 2000. Shape Fluctuations and Random Matrices. Communications in Mathematical Physics 209, no. 2 (2): 437-476. doi:[http://dx.doi.org/10.1007/s002200050027 10.1007/s002200050027]. | ||
* Tracy, Craig A., and Harold Widom. 2009. Asymptotics in ASEP with Step Initial Condition. Communications in Mathematical Physics 290, no. 1 (2): 129-154. doi:[http://dx.doi.org/10.1007/s00220-009-0761-0 10.1007/s00220-009-0761-0]. | * Tracy, Craig A., and Harold Widom. 2009. Asymptotics in ASEP with Step Initial Condition. Communications in Mathematical Physics 290, no. 1 (2): 129-154. doi:[http://dx.doi.org/10.1007/s00220-009-0761-0 10.1007/s00220-009-0761-0]. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[분류:개인노트]] | [[분류:개인노트]] | ||
[[분류:integrable systems]] | [[분류:integrable systems]] | ||
[[분류:math and physics]] | [[분류:math and physics]] |
2013년 3월 4일 (월) 05:29 판
introduction
- Bethe Ansatz and Exclusion Processes [1]http://events.berkeley.edu/index.php/calendar/sn/math.html?event_ID=39328&date=2011-02-01
- talk based on [TW2007]
- exclusion rule forbids to have more than one particle per site
- The simple exclusion process is a model of a lattice gas with an exclusion principle
- a particle can move to a neighboring site, with probability p to right and probability q to left, only if this is empty.
- special cases
- symmetric exclusion process p=q=1/2
- totally asymmetric exclusion process (TASEP)
particles jumping from left ro right or from right ro left with given probabilityes p and q (p+q=1)
x(t)=(x_1,\cdots,x_N)
G(x,t) = probability (x(t)=x | x(0) is distributed according to g(x) )
\frac{d}{dt}G(x,t)= L^{*}G
G(x,0)=\mathbf{1}(x=y)
\thm (Tracy-Widom)
If G'(x,t) is the probability of observing x at time t, starting from y, then
G'(x,t) is given by \sum_{\sigma\in S_N}G_{\sigma}(x,t) with G_{\sigma} given by
Bethe ansatz
- Heisenberg spin chain model can be viewed as a exclusion process (time evolution)
- Bethe ansatz
history
encyclopedia
expositions
- Golinelli, Olivier, and Kirone Mallick. 2006. The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics. Journal of Physics A: Mathematical and General 39, no. 41 (10): 12679-12705. doi:10.1088/0305-4470/39/41/S03.
articles
- Tracy, C. A., and H. Widom. 1996. Proofs of two conjectures related to the thermodynamic Bethe Ansatz. Communications in Mathematical Physics 179, no. 3 (9): 667-680. doi:10.1007/BF02100102.
- Lazarescu, Alexandre, 와/과Kirone Mallick. 2011. “An Exact Formula for the Statistics of the Current in the TASEP with Open Boundaries”. 1104.5089 (4월 27). http://arxiv.org/abs/1104.5089 .
- [TW2007]Tracy, Craig A, and Harold Widom. 2007. Integral Formulas for the Asymmetric Simple Exclusion Process. 0704.2633 (April 19). doi:doi:10.1007/s00220-008-0443-3. http://arxiv.org/abs/0704.2633.
- Family of Commuting Operators for the Totally Asymmetric Exclusion Process http://arxiv.org/abs/cond-mat/0612351
- Schütz, Gunter M. 1997. Exact solution of the master equation for the asymmetric exclusion process. Journal of Statistical Physics 88, no. 1 (7): 427-445. doi:10.1007/BF02508478.
- Johansson, Kurt. 2000. Shape Fluctuations and Random Matrices. Communications in Mathematical Physics 209, no. 2 (2): 437-476. doi:10.1007/s002200050027.
- Tracy, Craig A., and Harold Widom. 2009. Asymptotics in ASEP with Step Initial Condition. Communications in Mathematical Physics 290, no. 1 (2): 129-154. doi:10.1007/s00220-009-0761-0.