"Minors and plucker relations"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
==introduction</h5>
+
==introduction==
  
 
# (mat = Array[Subscript[a, ##] &, {3, 3}]) // MatrixForm<br> Minors[mat] // MatrixForm<br> Minors[mat, 1] // MatrixForm<br> Minors[mat, 2] // MatrixForm<br> Minors[mat, 3] // MatrixForm
 
# (mat = Array[Subscript[a, ##] &, {3, 3}]) // MatrixForm<br> Minors[mat] // MatrixForm<br> Minors[mat, 1] // MatrixForm<br> Minors[mat, 2] // MatrixForm<br> Minors[mat, 3] // MatrixForm
12번째 줄: 12번째 줄:
 
 
 
 
  
==3-term Plucker relation (Ptolemy relation)</h5>
+
==3-term Plucker relation (Ptolemy relation)==
  
 
* <math>\Delta _{i,k} \Delta _{j,l}=\Delta _{i,j} \Delta _{k,l}+\Delta _{i,l} \Delta _{j,k}</math>
 
* <math>\Delta _{i,k} \Delta _{j,l}=\Delta _{i,j} \Delta _{k,l}+\Delta _{i,l} \Delta _{j,k}</math>
24번째 줄: 24번째 줄:
 
 
 
 
  
==Plucker relations</h5>
+
==Plucker relations==
  
 
* <math>\Delta _{1,2}\Delta _{12,13}=\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}</math>
 
* <math>\Delta _{1,2}\Delta _{12,13}=\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}</math>
34번째 줄: 34번째 줄:
 
 
 
 
  
==Plucker coordinates of a Grassmannian</h5>
+
==Plucker coordinates of a Grassmannian==
  
 
 
 
 
40번째 줄: 40번째 줄:
 
 
 
 
  
==memo</h5>
+
==memo==
  
 
* [http://www.math.msu.edu/%7Emagyar/papers/MinorIdentities.pdf http://www.math.msu.edu/~magyar/papers/MinorIdentities.pdf]
 
* [http://www.math.msu.edu/%7Emagyar/papers/MinorIdentities.pdf http://www.math.msu.edu/~magyar/papers/MinorIdentities.pdf]
 
* http://www.ams.org/journals/proc/2008-136-01/S0002-9939-07-09122-8/S0002-9939-07-09122-8.pdf
 
* http://www.ams.org/journals/proc/2008-136-01/S0002-9939-07-09122-8/S0002-9939-07-09122-8.pdf

2012년 10월 28일 (일) 14:34 판

introduction

  1. (mat = Array[Subscript[a, ##] &, {3, 3}]) // MatrixForm
    Minors[mat] // MatrixForm
    Minors[mat, 1] // MatrixForm
    Minors[mat, 2] // MatrixForm
    Minors[mat, 3] // MatrixForm
  2. Simplify[Subscript[a, 1,
       3]*(-Subscript[a, 1, 2] Subscript[a, 2, 1] +
         Subscript[a, 1, 1] Subscript[a, 2, 2]) +
      Subscript[a, 1,
       1]*(-Subscript[a, 1, 3] Subscript[a, 2, 2] +
         Subscript[a, 1, 2] Subscript[a, 2, 3])]

 

 

 

 

3-term Plucker relation (Ptolemy relation)

  • \(\Delta _{i,k} \Delta _{j,l}=\Delta _{i,j} \Delta _{k,l}+\Delta _{i,l} \Delta _{j,k}\)
  • \(\Delta _{1,2}\Delta _{3,4}+\Delta _{1,4}\Delta _{2,3}=\Delta _{1,3}\Delta _{2,4}\)
  1. T := {{Subscript[a, 1, 1], Subscript[a, 1, 2], Subscript[a, 1, 3],
       Subscript[a, 1, 4]}, {Subscript[a, 2, 1], Subscript[a, 2, 2],
       Subscript[a, 2, 3], Subscript[a, 2, 4]}}
    Minor[i_, j_] := Det[{Transpose[T]i, Transpose[T]j}]
    Minor[1, 2]
  2. Simplify[Minor[1, 2] Minor[3, 4] + Minor[1, 4] Minor[2, 3]]
    Simplify[Minor[1, 3] Minor[2, 4]]

 

 

Plucker relations

  • \(\Delta _{1,2}\Delta _{12,13}=\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}\)
  1. \Delta _{12,12}\text{:=}-a_{1,2} a_{2,1}+a_{1,1} a_{2,2}\Delta _{12,23}\text{:=}-a_{1,3} a_{2,2}+a_{1,2} a_{2,3}\Delta _{1,3}\text{:=}a_{1,1}\Delta _{1,3}\text{:=}a_{1,3}\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}

 

 

Plucker coordinates of a Grassmannian

 

 

memo