"Seminar topics on affine Lie algebras"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 (→topics) |
||
6번째 줄: | 6번째 줄: | ||
===Sugawara construction of Virasoro algebra=== | ===Sugawara construction of Virasoro algebra=== | ||
===integrable highest weight representations of affine Lie algebras=== | ===integrable highest weight representations of affine Lie algebras=== | ||
+ | ===Wess-Zumino-Witten model=== | ||
===Weyl-Kac character formula and modular transformations=== | ===Weyl-Kac character formula and modular transformations=== | ||
===fusion rules and Verlinde formula=== | ===fusion rules and Verlinde formula=== | ||
11번째 줄: | 12번째 줄: | ||
===admissible representations=== | ===admissible representations=== | ||
* Heisenberg or Virasoro? | * Heisenberg or Virasoro? | ||
− | |||
==memo== | ==memo== |
2015년 3월 3일 (화) 16:41 판
Meetings: Thursdays 3-4:30 pm, Priestly Building Seminar Room 67-442
topics
Kac-Moody algebras
affine Lie algerbas as central extensions of loop algerbas
Sugawara construction of Virasoro algebra
integrable highest weight representations of affine Lie algebras
Wess-Zumino-Witten model
Weyl-Kac character formula and modular transformations
fusion rules and Verlinde formula
vertex operator constructions of basic representations
admissible representations
- Heisenberg or Virasoro?
memo
links
readings
- Berman, Stephen, and Karen Hunger Parshall. ‘Victor Kac and Robert Moody: Their Paths to Kac-Moody Lie Algebras’. The Mathematical Intelligencer 24, no. 1 (13 January 2009): 50–60. doi:10.1007/BF03025312.
- Dolan, Louise. ‘The Beacon of Kac-Moody Symmetry for Physics’. Notices of the American Mathematical Society 42, no. 12 (1995): 1489–95. http://www.ams.org/notices/199512/dolan.pdf