"Beilinson conjectures"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
38번째 줄: | 38번째 줄: | ||
[[분류:K-theory]] | [[분류:K-theory]] | ||
+ | [[분류:L-values]] |
2014년 10월 26일 (일) 22:00 판
introduction
- generalizations of
- the Lichtenbaum conjectures for K-groups of number rings
- the Hodge conjecture
- the Tate conjecture about algebraic cycles
- the Birch and Swinnerton-Dyer conjecture about elliptic curves
- Bloch's conjecture about K2 of elliptic curves
- the Beĭlinson conjectures describe the leading coefficients of L-series of varieties over number fields up to rational factors in terms of generalized regulators
- Bloch-Beilinson conjecture predicts that ranks of Chow groups of homologically trivial cycles should be related to orders of vanishing of L-functions.
- Bloch–Kato conjectures for special values of L-functions
- Borel's regulator
- Bloch's regulator
- Hypergeometric motives
question and answers(Math Overflow)
expositions
- Nekovár, Jan. "Beilinson’s conjectures." U. Jannsen, SL Kleiman, J.–P. Serre,“Motives”, Proceedings of the Research Conference on Motives held July. 1994. http://www.math.jussieu.fr/~nekovar/pu/mot.pdf
- Scholl, A. J. 1992. “Modular Forms and Algebraic $K$-Theory.” Astérisque (209): 12, 85–97.
- Deninger, Christopher, and Anthony J. Scholl. 1991. “The Beilinson Conjectures.” In $L$-Functions and Arithmetic (Durham, 1989), 153:173–209. London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press. http://www.ams.org/mathscinet-getitem?mr=1110393.
- Introduction to the Beilinson Conjectures, Peter Schneider
articles
- Lemma, Francesco. “On Higher Regulators of Siegel Threefolds II: The Connection to the Special Value.” arXiv:1409.8391 [math], September 30, 2014. http://arxiv.org/abs/1409.8391.
- Miyazaki, Hiroyasu. “Special Values of Zeta Functions of Varieties over Finite Fields via Higher Chow Groups.” arXiv:1406.1390 [math], June 5, 2014. http://arxiv.org/abs/1406.1390.
- Otsubo, Noriyuki. “On Special Values of Jacobi-Sum Hecke L-Functions.” arXiv:1404.7476 [math], April 29, 2014. http://arxiv.org/abs/1404.7476.
- Brunault, François. 2006. “Version Explicite Du Théorème de Beilinson Pour La Courbe Modulaire.” Comptes Rendus Mathematique 343 (8) (October 15): 505–510. doi:10.1016/j.crma.2006.09.014.
- Beilinson, A. A. 1987. “Height Pairing between Algebraic Cycles.” In $K$-Theory, Arithmetic and Geometry (Moscow, 1984–1986), 1289:1–25. Lecture Notes in Math. Berlin: Springer. http://www.ams.org/mathscinet-getitem?mr=923131.
- Beilinson, A. A. 1984. “Higher Regulators and Values of $L$-Functions.” In Current Problems in Mathematics, Vol. 24, 181–238. Itogi Nauki I Tekhniki. Moscow: Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform. http://www.ams.org/mathscinet-getitem?mr=760999. http://dx.doi.org/10.1007/BF02105861