"Modular invariance in math and physics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
14번째 줄: 14번째 줄:
 
* [[path integral and moduli space of Riemann surfaces]]<br><math>Z=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}=\sum_{g=0}^{\infty} g_{s}^{2g-2}Z_{g}=\frac{1}{g_{s}^2}Z_{0}+g_{s}^{0}Z_{1}+g_{s}^2Z_{2}+\cdtos</math><br>
 
* [[path integral and moduli space of Riemann surfaces]]<br><math>Z=\sum_{g=0}^{\infty} g_{s}^{-\chi(\Sigma_{g})}Z_{g}=\sum_{g=0}^{\infty} g_{s}^{2g-2}Z_{g}=\frac{1}{g_{s}^2}Z_{0}+g_{s}^{0}Z_{1}+g_{s}^2Z_{2}+\cdtos</math><br>
 
* <math>Z_{1}</math> is an integral over <math>M_1 = \mathbb{H}/SL(2,\mathbb{Z})</math> i.e. the fundamental domain.
 
* <math>Z_{1}</math> is an integral over <math>M_1 = \mathbb{H}/SL(2,\mathbb{Z})</math> i.e. the fundamental domain.
* string theory (symmetries, modular g
+
* string theory (symmetries, modular group) has a natural covariant UV cutoff!<br>
 +
** compare with http://www.physics.thetangentbundle.net/wiki/Quantum_field_theory/Schwinger_proper_time_formalism
  
 
 
 
 

2012년 8월 26일 (일) 04:28 판

introduction

 

 

path integral in string theory

 

 

 

circle method

 

 

 

related items