"Monoidal categorifications of cluster algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
135번째 줄: 135번째 줄:
 
<h5>expositions</h5>
 
<h5>expositions</h5>
  
* Keller, Bernhard. 2008. “Cluster algebras, quiver representations and triangulated categories”. <em>0807.1960</em> (7월 12). [http://arxiv.org/abs/0807.1960. ]http://arxiv.org/abs/0807.1960.
+
* Leclerc, Bernard. 2011. “Quantum loop algebras, quiver varieties, and cluster algebras”. <em>1102.1076</em> (2월 5). http://arxiv.org/abs/1102.1076.<br>  <br>
 +
* Keller, Bernhard. 2008. “Cluster algebras, quiver representations and triangulated categories”. <em>0807.1960</em> (7월 12). http://arxiv.org/abs/0807.1960.
 
* [http://www.math.jussieu.fr/%7Ekeller/publ/Reisensburg.pdf Cluster algebras and quiver representations], Keller, Bernhard, 2006
 
* [http://www.math.jussieu.fr/%7Ekeller/publ/Reisensburg.pdf Cluster algebras and quiver representations], Keller, Bernhard, 2006
 
* [http://www.mpim-bonn.mpg.de/node/365 Total positivity, cluster algebras and categorification]
 
* [http://www.mpim-bonn.mpg.de/node/365 Total positivity, cluster algebras and categorification]

2011년 4월 13일 (수) 05:50 판

introduction
  • replace cluster variables by modules

 

 

notions
  • quiver : oriented graph
  • represetation of a quiver : collection of vector space and linear maps between them
  • homomorphism of 2 quiver representations
  • path algebra of a quiver
    • given a quiver Q, a path p is a sequence of arrows with some conditions
    • path algebra : set of all k-linear combinations of all paths (including e_i's)
    • p_1p_2 will correspond to a composition \(p_2\circ p_1\) of two maps (\(U\overset{P_2}{\rightarrow }V\overset{P_1}{\rightarrow }W\))
  • quiver representation is in fact, a representaion of path algebra of a quiver

 

 

finite type quiver classfication
  • quiver has finite type of there are finitely many indecomposables

 

 

\thm (Gabriel)

A connected quiver Q has finite type iff corresponding graph is Dynking diagram (A,D,E)

 

 

Caldero-Chapoton formula

CC(V) =\chi_{V}

 

 

monoidal categorification

M : monoidal categorification

M is a monoidal categorification of A if the Grothendieck ring of M is isomorphic to A and if

(i) cluster monomials' of A are the classes of real simple objects of M

(ii) cluster variables' of a (including coefficients) are classes of real prime simple objects

 

 

\prop

Suppose that A has a monoidal categorification M and also that each object B in M has unique finite composition series

(find simple subobject A_1, then simple subobject of A_2 of B/A_1, etc ... composition series if colleciton of all A's)

Then

(i) each cluster variable of a has positivie Laurent expansion with respect to any cluster

(ii) cluster monomials are linearly independent

 

 

 

 

 

periodicity conjecture

outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

blogs

 

 

experts on the field

 

 

links