"Monoidal categorifications of cluster algebras"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0 잔글 (Pythagoras0 사용자가 Categorifications of cluster algebras 문서를 Monoidal categorifications of cluster algebras 문서로 옮겼습니다.)  | 
				imported>Pythagoras0   | 
				||
| 49번째 줄: | 49번째 줄: | ||
* [[categorification of quantum groups]]  | * [[categorification of quantum groups]]  | ||
| + | |||
| + | ==computational resource==  | ||
| + | * https://docs.google.com/file/d/0B8XXo8Tve1cxbXM4aFBiRWotdk0/edit?usp=drivesdk  | ||
| 68번째 줄: | 71번째 줄: | ||
* Caldero, Philippe, 와/과Andrei Zelevinsky. 2006. “Laurent expansions in cluster algebras via quiver representations”. <em>math/0604054</em> (4월 3). http://arxiv.org/abs/math/0604054.  | * Caldero, Philippe, 와/과Andrei Zelevinsky. 2006. “Laurent expansions in cluster algebras via quiver representations”. <em>math/0604054</em> (4월 3). http://arxiv.org/abs/math/0604054.  | ||
*  Caldero, Philippe, 와/과Frederic Chapoton. 2004. “Cluster algebras as Hall algebras of quiver representations”. <em>math/0410187</em> (10월 7). http://arxiv.org/abs/math/0410187.     | *  Caldero, Philippe, 와/과Frederic Chapoton. 2004. “Cluster algebras as Hall algebras of quiver representations”. <em>math/0410187</em> (10월 7). http://arxiv.org/abs/math/0410187.     | ||
| − | |||
2013년 10월 20일 (일) 10:11 판
introduction
- replace cluster variables by modules
 
 
Caldero-Chapoton formula
- CC(V) =\chi_{V}
 
 
 
monoidal categorification
- M : monoidal categorification
 - M is a monoidal categorification of A if the Grothendieck ring of M is isomorphic to A and if
 
- cluster monomials' of A are the classes of real simple objects of M
 - cluster variables' of a (including coefficients) are classes of real prime simple objects
 
 
proposition
- Suppose that A has a monoidal categorification M and also that each object B in M has unique finite composition series, (i.e., find simple subobject A_1, then simple subobject of A_2 of B/A_1, etc ... composition series if colleciton of all A's)
 - Then
 
- each cluster variable of a has positivie Laurent expansion with respect to any cluster
 - cluster monomials are linearly independent
 
periodicity conjecture
- outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams
 
history
 
 
computational resource
 
expositions
- collection of notes http://mathserver.neu.edu/~sstella/seminars/cac-2011.shtml
 - Leclerc, Bernard. 2011. “Quantum loop algebras, quiver varieties, and cluster algebras”. 1102.1076 (2월 5). http://arxiv.org/abs/1102.1076.
 - Keller, Bernhard. 2008. “Cluster algebras, quiver representations and triangulated categories”. 0807.1960 (7월 12). http://arxiv.org/abs/0807.1960.
 - Cluster algebras and quiver representations, Keller, Bernhard, 2006
 - Total positivity, cluster algebras and categorification
 
articles
- David Hernandez, Bernard Leclerc , Monoidal categorifications of cluster algebras of type A and D http://arxiv.org/abs/1207.3401
 - Nakajima, Hiraku. 2011. “Quiver varieties and cluster algebras”. Kyoto Journal of Mathematics 51 (1): 71-126. doi:10.1215/0023608X-2010-021.
 - Rupel, Dylan. 2010. “On Quantum Analogue of The Caldero-Chapoton Formula”. 1003.2652 (3월 12). doi:doi:10.1093/imrn/rnq192. http://arxiv.org/abs/1003.2652.
 - Caldero, Philippe, 와/과Andrei Zelevinsky. 2006. “Laurent expansions in cluster algebras via quiver representations”. math/0604054 (4월 3). http://arxiv.org/abs/math/0604054.
 - Caldero, Philippe, 와/과Frederic Chapoton. 2004. “Cluster algebras as Hall algebras of quiver representations”. math/0410187 (10월 7). http://arxiv.org/abs/math/0410187.