"Monoidal categorifications of cluster algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
* replace cluster variables by modules of quantum groups
 
* replace cluster variables by modules of quantum groups
* [[Kirillov-Reshetikhin (KR) modules]] of [[Quantum affine algebra]]
+
* motivation comes from [[Positivity conjecture on cluster algebras]]
* [[Classification of cluster algebras of finite type]]
 
 
 
  
==Caldero-Chapoton formula==
 
  
* CC(V) =\chi_{V}
+
==main results==
 +
* Hernandez-Leclerc and Nakajima categorified [[Classification of cluster algebras of finite type|cluster algebras of finite type]] using [[Kirillov-Reshetikhin (KR) modules]] of [[Quantum affine algebra]]
  
 
  
 
   
 
   
  
 
==monoidal categorification==
 
==monoidal categorification==
* M : monoidal categorification
+
* $A$ : cluster algebra
* M is a monoidal categorification of A if the Grothendieck ring of M is isomorphic to A and if
+
* $M$ : monoidal categorify
# cluster monomials' of A are the classes of real simple objects of M
+
* $M$ is a monoidal categorification of $A$ if the Grothendieck ring $K_0(M)$ of $M$ is isomorphic to $A$ which induces bijection between
# cluster variables' of a (including coefficients) are classes of real prime simple objects
+
# cluster monomials of $A$
 +
# the classes of real simple objects of $M$ where $V$ is ''real'' if $V\otimes V$ is simple
 +
* cluster variables of $A$ (including coefficients) corresponds to classes of real prime simple objects
  
 
   
 
   
  
 
===proposition===
 
===proposition===
* Suppose that A has a monoidal categorification M and also that each object B in M has unique finite composition series, (i.e., find simple subobject A_1, then simple subobject of A_2 of B/A_1, etc ... composition series if colleciton of all A's)
+
* Suppose that $A$ has a monoidal categorification $M$ and also that each object $B$ in $M$ has unique finite composition series, (i.e., find simple subobject $A_1$, then simple subobject of $A_2$ of $B/A_1$, etc ... composition series if colleciton of all $A$'s)
 
* Then
 
* Then
 
# each cluster variable of a has positivie Laurent expansion with respect to any cluster
 
# each cluster variable of a has positivie Laurent expansion with respect to any cluster
 
# cluster monomials are linearly independent
 
# cluster monomials are linearly independent
  
 +
 +
 +
==Caldero-Chapoton formula==
 +
* $CC(V) =\chi_{V}$
 +
 +
  
  

2013년 10월 21일 (월) 07:00 판

introduction


main results



monoidal categorification

  • $A$ : cluster algebra
  • $M$ : monoidal categorify
  • $M$ is a monoidal categorification of $A$ if the Grothendieck ring $K_0(M)$ of $M$ is isomorphic to $A$ which induces bijection between
  1. cluster monomials of $A$
  2. the classes of real simple objects of $M$ where $V$ is real if $V\otimes V$ is simple
  • cluster variables of $A$ (including coefficients) corresponds to classes of real prime simple objects


proposition

  • Suppose that $A$ has a monoidal categorification $M$ and also that each object $B$ in $M$ has unique finite composition series, (i.e., find simple subobject $A_1$, then simple subobject of $A_2$ of $B/A_1$, etc ... composition series if colleciton of all $A$'s)
  • Then
  1. each cluster variable of a has positivie Laurent expansion with respect to any cluster
  2. cluster monomials are linearly independent


Caldero-Chapoton formula

  • $CC(V) =\chi_{V}$



periodicity conjecture

  • outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams



history



related items


computational resource


expositions

articles

  • David Hernandez, Bernard Leclerc , Monoidal categorifications of cluster algebras of type A and D http://arxiv.org/abs/1207.3401
  • Nakajima, Hiraku. 2011. “Quiver varieties and cluster algebras”. Kyoto Journal of Mathematics 51 (1): 71-126. doi:10.1215/0023608X-2010-021.
  • Rupel, Dylan. 2010. “On Quantum Analogue of The Caldero-Chapoton Formula”. 1003.2652 (3월 12). doi:doi:10.1093/imrn/rnq192. http://arxiv.org/abs/1003.2652.
  • Caldero, Philippe, 와/과Andrei Zelevinsky. 2006. “Laurent expansions in cluster algebras via quiver representations”. math/0604054 (4월 3). http://arxiv.org/abs/math/0604054.
  • Caldero, Philippe, 와/과Frederic Chapoton. 2004. “Cluster algebras as Hall algebras of quiver representations”. math/0410187 (10월 7). http://arxiv.org/abs/math/0410187.