"Monoidal categorifications of cluster algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
58번째 줄: 58번째 줄:
  
 
==articles==
 
==articles==
 +
* Kang, Seok-Jin, Masaki Kashiwara, Myungho Kim, and Se-jin Oh. ‘Monoidal Categorification of Cluster Algebras II’. arXiv:1502.06714 [math], 24 February 2015. http://arxiv.org/abs/1502.06714.
 
* Kang, Seok-Jin, Masaki Kashiwara, Myungho Kim, and Se-jin Oh. “Monoidal Categorification of Cluster Algebras.” arXiv:1412.8106 [math], December 27, 2014. http://arxiv.org/abs/1412.8106.
 
* Kang, Seok-Jin, Masaki Kashiwara, Myungho Kim, and Se-jin Oh. “Monoidal Categorification of Cluster Algebras.” arXiv:1412.8106 [math], December 27, 2014. http://arxiv.org/abs/1412.8106.
 
* Ma, Hai-Tao, Yan-Min Yang, and Zhu-Jun Zheng. “Quantum Cluster Algebra Structure on the Finite Dimensional Representations of $U_q(\widehat{sl_{2}})$.” arXiv:1406.2452 [math-Ph], June 10, 2014. http://arxiv.org/abs/1406.2452.
 
* Ma, Hai-Tao, Yan-Min Yang, and Zhu-Jun Zheng. “Quantum Cluster Algebra Structure on the Finite Dimensional Representations of $U_q(\widehat{sl_{2}})$.” arXiv:1406.2452 [math-Ph], June 10, 2014. http://arxiv.org/abs/1406.2452.

2015년 2월 24일 (화) 20:10 판

introduction


main results



monoidal categorification

  • $A$ : cluster algebra
  • $M$ : monoidal categorify
  • $M$ is a monoidal categorification of $A$ if the Grothendieck ring $K_0(M)$ of $M$ is isomorphic to $A$ which induces bijection between
  1. cluster monomials of $A$
  2. the classes of real simple objects of $M$ where $V$ is real if $V\otimes V$ is simple
  • cluster variables of $A$ (including coefficients) corresponds to classes of real prime simple objects


proposition

  • Suppose that $A$ has a monoidal categorification $M$ and also that each object $B$ in $M$ has unique finite composition series, (i.e., find simple subobject $A_1$, then simple subobject of $A_2$ of $B/A_1$, etc ... composition series if colleciton of all $A$'s)
  • Then
  1. each cluster variable of a has positivie Laurent expansion with respect to any cluster
  2. cluster monomials are linearly independent



history



related items


computational resource


expositions

articles

  • Kang, Seok-Jin, Masaki Kashiwara, Myungho Kim, and Se-jin Oh. ‘Monoidal Categorification of Cluster Algebras II’. arXiv:1502.06714 [math], 24 February 2015. http://arxiv.org/abs/1502.06714.
  • Kang, Seok-Jin, Masaki Kashiwara, Myungho Kim, and Se-jin Oh. “Monoidal Categorification of Cluster Algebras.” arXiv:1412.8106 [math], December 27, 2014. http://arxiv.org/abs/1412.8106.
  • Ma, Hai-Tao, Yan-Min Yang, and Zhu-Jun Zheng. “Quantum Cluster Algebra Structure on the Finite Dimensional Representations of $U_q(\widehat{sl_{2}})$.” arXiv:1406.2452 [math-Ph], June 10, 2014. http://arxiv.org/abs/1406.2452.
  • Yang, Yan-Min, and Zhu-Jun Zheng. 2014. “Cluster Algebra Structure on the Finite Dimensional Representations of $U_q(\widehat{A_{3}})$ for $l$=2.” arXiv:1403.5124 [math-Ph], March. http://arxiv.org/abs/1403.5124.
  • David Hernandez, Bernard Leclerc , Monoidal categorifications of cluster algebras of type A and D http://arxiv.org/abs/1207.3401
  • Nakajima, Hiraku. 2011. “Quiver varieties and cluster algebras”. Kyoto Journal of Mathematics 51 (1): 71-126. doi:10.1215/0023608X-2010-021.