"Motive"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | + | geometry roughly= cohomology | |
+ | |||
+ | |||
+ | |||
+ | examples | ||
+ | |||
+ | circle S^1 | ||
+ | |||
+ | Betti cohomolgy (singular cohomology) | ||
+ | |||
+ | H^0(S^1,Z)=Z | ||
+ | |||
+ | H^1(S^1,Z)=Z | ||
+ | |||
+ | |||
+ | |||
+ | \mathbb{G}_m = \mathbb{C}^{x} = \mathbb{C}/{0} same homotopy class as S^1 | ||
+ | |||
+ | Betti cohomology is same | ||
+ | |||
+ | H^0(\mathbb{G}_m,Z)=Z | ||
+ | |||
+ | H^1(\mathbb{G}_m,Z)=Z , this is dual to H_1(\mathbb{G}_m,Z) | ||
+ | |||
+ | |||
+ | |||
+ | de Rham cohomology | ||
+ | |||
+ | H^0_{dR}(\mathbb{G}_m)=\mathbb{C} | ||
+ | |||
+ | H^1_{dR}(\mathbb{G}_m)=\mathbb{C} |
2010년 12월 3일 (금) 08:17 판
geometry roughly= cohomology
examples
circle S^1
Betti cohomolgy (singular cohomology)
H^0(S^1,Z)=Z
H^1(S^1,Z)=Z
\mathbb{G}_m = \mathbb{C}^{x} = \mathbb{C}/{0} same homotopy class as S^1
Betti cohomology is same
H^0(\mathbb{G}_m,Z)=Z
H^1(\mathbb{G}_m,Z)=Z , this is dual to H_1(\mathbb{G}_m,Z)
de Rham cohomology
H^0_{dR}(\mathbb{G}_m)=\mathbb{C}
H^1_{dR}(\mathbb{G}_m)=\mathbb{C}