"Solitons"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
94번째 줄: 94번째 줄:
 
* Theory of Nonlinear Lattices, Morikazu Toda
 
* Theory of Nonlinear Lattices, Morikazu Toda
 
* Nonlinear evolution equations solvable by the spectral transform, Eds. Calogero, 1977
 
* Nonlinear evolution equations solvable by the spectral transform, Eds. Calogero, 1977
* Solitons and Nonlinear Wave Equations<br>
+
* Solitons and Nonlinear Wave Equations, R.K.Dodd, J.C.Eilbeck, J.D.Gibbon, H.C.Morries, Academic Press, London, 1982
** R.K.Dodd, J.C.Eilbeck, J.D.Gibbon, H.C.Morries, Academic Press, London, 1982
 
 
* [[2010년 books and articles]]
 
* [[2010년 books and articles]]
 
* http://gigapedia.info/1/soliton
 
* http://gigapedia.info/1/soliton
128번째 줄: 127번째 줄:
 
* [http://xxx.lanl.gov/abs/q-alg/9712005 Five Lectures on Soliton Equations]<br>
 
* [http://xxx.lanl.gov/abs/q-alg/9712005 Five Lectures on Soliton Equations]<br>
 
** Edward Frenkel, Submitted on 30 Nov 1997
 
** Edward Frenkel, Submitted on 30 Nov 1997
* Richard S Palais, “The Symmetries of Solitons,” dg-ga/9708004 (August 8, 1997), http://arxiv.org/abs/dg-ga/9708004.  http://dx.doi.org/10.1090/S0273-0979-97-00732-5
+
* Richard S Palais, “The Symmetries of Solitons,” dg-ga/9708004 (August 8, 1997), http://arxiv.org/abs/dg-ga/9708004.  [http://dx.doi.org/10.1090/S0273-0979-97-00732-5 ]http://dx.doi.org/10.1090/S0273-0979-97-00732-5
* [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 A brief history of the quantum soliton with new results on the quantization of the Toda lattice]<br>
+
*  Ford, Joseph. 1992. The Fermi-Pasta-Ulam problem: Paradox turns discovery. Physics Reports 213, no. 5 (May): 271-310. doi:[http://dx.doi.org/10.1016/0370-1573%2892%2990116-H 10.1016/0370-1573(92)90116-H]. <br>  <br>
** Bill Sutherland, Rocky Mountain J. Math. Volume 8, Number 1-2 (1978), 413-430.
+
* [http://dx.doi.org/10.1216/RMJ-1978-8-1-413 A brief history of the quantum soliton with new results on the quantization of the Toda lattic]Bill Sutherland, Rocky Mountain J. Math. Volume 8, Number 1-2 (1978), 413-430.
  
 
 
 
 

2011년 3월 15일 (화) 07:47 판

introduction
  • Solitons were discovered experimentally (Russell 1844)
  • analytically (Korteweg & de Vries, 1895)
    • modelling of Russell's discovery
    • 1-soliton solution
  • numerically (Zabusky & Kruskal 1965).
    • interaction of two 1-soliton solutions
    • they discovered that solitons of differenct sizes interact cleanly

 

 

meaning of soliton
  • "soliton" is used to describe their particle-like properties like bosons, fermions and hadrons
  • any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)

 

 

PDEs

 

 

important techniques

 

 

mathematica code

 

history

 

 

 

하위페이지

 

 

related items

 

 

books

 

 

encyclopedia

 

 

 

expositions

 

 

articles
  • Solitons, Links and Knots
    • Richard Battye, Paul Sutcliffe, Proc. R. Soc. Lond. A 8 December 1999 vol. 455 no. 1992 4305-4331
  • The Symmetries of Solitons
    • Richard S. Palais, Journal: Bull. Amer. Math. Soc. 34 (1997), 339-403
  • From Solitons to Knots and Links
    • Miki Wadati and Yasuhiro Akutsu, Prog. Theor. Phys. Supplement No.94 (1988) pp. 1-41
  • Lax, P. D. 1996. Outline of a Theory of the KdV Equation in Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, volume 1640, pp. 70–102. New York: Springer.
  • Russell, J. S. 1844. Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–90. London: John Murray.
  • Toda, M. 1989. Nonlinear Waves and Solitons. Dordrecht: Kluwer.
  • Zabusky, N. J., and M. D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Physics Review Letters 15:240–43.

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links