"Anomalous magnetic moment of electron"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
47번째 줄: 47번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">tree level and one-loop diagrams==
+
==tree level and one-loop diagrams==
  
 
*  1 one-loop diagram<br>[/pages/7141159/attachments/4563145 2004329152921_150.gif]<br>
 
*  1 one-loop diagram<br>[/pages/7141159/attachments/4563145 2004329152921_150.gif]<br>
98번째 줄: 98번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">anaomalous muon magnetic dipole moment==
+
==anaomalous muon magnetic dipole moment==
  
 
*  anaomalous muon magnetic dipole moment is still unknown<br>
 
*  anaomalous muon magnetic dipole moment is still unknown<br>
129번째 줄: 129번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
+
==encyclopedia==
  
 
* number of Feynman diagrams [http://oeis.org/A005413 ]http://oeis.org/A005413
 
* number of Feynman diagrams [http://oeis.org/A005413 ]http://oeis.org/A005413
163번째 줄: 163번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
+
==articles==
  
 
*  Broadhurst, D. J, and D. Kreimer. 1996. Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. hep-th/9609128 (September 16). doi:doi:[http://dx.doi.org/10.1016/S0370-2693%2896%2901623-1 10.1016/S0370-2693(96)01623-1]. http://arxiv.org/abs/hep-th/9609128. <br>  <br>
 
*  Broadhurst, D. J, and D. Kreimer. 1996. Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. hep-th/9609128 (September 16). doi:doi:[http://dx.doi.org/10.1016/S0370-2693%2896%2901623-1 10.1016/S0370-2693(96)01623-1]. http://arxiv.org/abs/hep-th/9609128. <br>  <br>

2012년 10월 28일 (일) 16:41 판

introduction

  • amplitude = sum of integrals = \(\sum_{n\text{ loops}}\) sum of integrals
  • anomalous electron magnetic dipole moment 1.00115965219
  • theoretical computation matches 11 digits with experiments
  • as n grows, number of Feynman diagrams grows exponentially
  • integrals are becoming difficult

 

 

classical magnetic moment

 

 

anamalous electron magnetic dipole moment

  • In Dirac’s theory a point like spin 1/2 object of electric charge q and mass m has a magnetic moment\[\mathbf{\mu}=q\mathbf{S}/m\]
  • so the Bohr magneton of the electron (http://en.wikipedia.org/wiki/Bohr_magneton)  becomes
    \(\mu_\mathrm{B} = {{e \hbar} \over {2 m_\mathrm{e}}}\) since the spin of the electron is \(S=\frac{\hbar}{2}\)
  • but in QED, there are correction terms to this
  • actual spin magnetic moment of the electron involves the spin g-factor (gyromagnetic ratio)
    \(\vec{\mu}_S \ = g_e \mu_\mathrm{B} \frac{\vec{S}}{\hbar}=g\frac{e}{2 m_{e}} \ \vec{S}\)
  • classical vs quantum
    [/pages/3589069/attachments/4562673 2004329152457_150.gif]

 

  • The g factor sets the strength of an electron’s interaction with a magnetic field.
  • In classical physics (left) magnetic lines of force (perpendicular to the page) induce a curvature in the electron’s path.
  • In quantum electrodynamics (right) the electron interacts with the field by emitting or absorbing a photon.
  • The event is represented in a Feynman diagram, where space extends along the horizontal axis and time moves up the vertical axis.
  • \(g/2=1+c_1\frac{\alpha}{2\pi}+c_2(\frac{\alpha}{2\pi})^2+c_3(\frac{\alpha}{2\pi})^3+\cdots=1.00115965219+\cdots\)
  • http://www.wolframalpha.com/input/?i=fine+structure+constant
  • http://www.wolframalpha.com/input/?i=1/fine+structure+constant

 

 

 

tree level and one-loop diagrams

  • 1 one-loop diagram
    [/pages/7141159/attachments/4563145 2004329152921_150.gif]
  • Feynman, Julian Schwinger, Sin-Itiro Tomonaga and Freeman Dyson
  • Schwinger showed that the one-loop contribution to the "anomalous magnetic moment" of the electron is \(\alpha/{2\pi}=0.00116\cdots\)
  • Schwinger, Julian. 1948. On Quantum-Electrodynamics and the Magnetic Moment of the Electron. Physical Review 73, no. 4 (February 15): 416. doi:10.1103/PhysRev.73.416
     
  • http://www.wolframalpha.com/input/?i=fine+structure+constant%2F%282pi%29

 

 

two-loop diagrams

  • 7 two-loop diagrams
    [/pages/3589069/attachments/4562669 2004329153354_150.gif]
    [/pages/7141159/attachments/4562733 I15-62-g2c.jpg]

 

 

three-loop diagrams

  • 72 three-loop diagrams
  • [/pages/3589069/attachments/4562671 200432915395_150.gif]
  • Kinoshita, Toichiro. 1995. New Value of the alpha^{3} Electron Anomalous Magnetic Moment. Physical Review Letters 75, no. 26 (December 25): 4728. doi:10.1103/PhysRevLett.75.4728
     

 

 

four-loop diagrams

  •  891 diagrams

 

 

five-loop Feynman diagrams

 

 

 

anaomalous muon magnetic dipole moment

 

 

memo

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links