"Anomalous magnetic moment of electron"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (Pythagoras0 사용자가 Magnetic moment of electron 문서를 Anomalous magnetic moment of electron 문서로 옮겼습니다.)
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
 
* amplitude = sum of integrals = <math>\sum_{n\text{ loops}}</math> sum of integrals
 
* amplitude = sum of integrals = <math>\sum_{n\text{ loops}}</math> sum of integrals
 
* anomalous electron magnetic dipole moment 1.00115965219
 
* anomalous electron magnetic dipole moment 1.00115965219
7번째 줄: 6번째 줄:
 
* integrals are becoming difficult
 
* integrals are becoming difficult
  
 +
===Lande's question===
 +
* Bohr magneton <math>\mu_0=e\hbar /2mc</math>
 +
* spin magnetic dipole moment <math>\mu_s</math>
 +
* Q. <math>\mu_s=\mu_0</math> ? (Back and Lande 1925)
 +
* We define $g$ to be the gyromagnetic ratio
 +
:<math>\mu_s=\frac{g\mu_0}{2}</math>
  
  
12번째 줄: 17번째 줄:
  
 
* read [[spin system and Pauli exclusion principle|spin system]] first
 
* read [[spin system and Pauli exclusion principle|spin system]] first
* gyromagnetic ratio is defined as "magnetic dipole moment"/"angular momentum"<br><math>\gamma = \mu/L=-e/2m_e</math><br>[/pages/7141159/attachments/4562863 I15-62-g20.jpg]<br>
+
* gyromagnetic ratio is defined as "magnetic dipole moment"/"angular momentum"
 +
:<math>\gamma = \mu/L=-e/2m_e</math>
 +
[/pages/7141159/attachments/4562863 I15-62-g20.jpg]
 
* pictures from [http://universe-review.ca/R15-12-QFT.htm#g2 Gyromagnetic Ratio and Anomalous Magnetic Moment]
 
* pictures from [http://universe-review.ca/R15-12-QFT.htm#g2 Gyromagnetic Ratio and Anomalous Magnetic Moment]
 +
 +
 +
===orbital===
 +
* Let $e$, $m_e$, $v$, and $r$ be the electron's charge, mass, velocity, and radius, respectively.
 +
* A classical electron moving around a nucleus in a circular orbit
 +
** orbital angular momentum, <math>L=m_evr</math>
 +
** magnetic dipole moment, <math>\mu= -evr/2</math>
 +
* we get $\gamma=\mu/L=-e/2m_e$
 +
 +
===spin===
 +
* A classical electron of homogeneous mass and charge density rotating about a symmetry axis
 +
** spin angular momentum, <math>L=(3/5)m_eR^2\Omega</math>
 +
** magnetic dipole moment, <math>\mu= -(3/10)eR^2\Omega</math>, where $R$ and $\Omega$ are the electron's classical radius and rotating frequency
 +
* we get <math>\gamma = \mu/L=-e/2m_e</math>
  
  
 
==anamalous electron magnetic dipole moment==
 
==anamalous electron magnetic dipole moment==
 +
===Dirac theory===
 +
* In Dirac’s theory a point like spin 1/2 object of electric charge $q$ and mass $m$ has a magnetic moment
 +
:<math>\mathbf{\mu}=q\mathbf{S}/m</math>
 +
* so the Bohr magneton of the electron becomes
 +
:<math>\mu_\mathrm{B} = {{e \hbar} \over {2 m_\mathrm{e}}}</math> since the spin of the electron is <math>S=\frac{\hbar}{2}</math>
  
* In Dirac’s theory a point like spin 1/2 object of electric charge q and mass m has a magnetic moment: <math>\mathbf{\mu}=q\mathbf{S}/m</math>
+
*  so the Bohr magneton of the electron ([http://en.wikipedia.org/wiki/Bohr_magneton%29 http://en.wikipedia.org/wiki/Bohr_magneton)]  becomes<br><math>\mu_\mathrm{B} = {{e \hbar} \over {2 m_\mathrm{e}}}</math> since the spin of the electron is <math>S=\frac{\hbar}{2}</math><br>
+
===g-factor===
* but in QED, there are correction terms to this
+
* there are correction terms to the spin magnetic moment of the electron as shown by experiments
* actual spin magnetic moment of the electron involves the spin g-factor (gyromagnetic ratio)<br><math>\vec{\mu}_S \ = g_e \mu_\mathrm{B} \frac{\vec{S}}{\hbar}=g\frac{e}{2 m_{e}} \ \vec{S}</math><br>
+
* actual spin magnetic moment of the electron involves the spin g-factor (gyromagnetic ratio)
* classical vs quantum<br>[/pages/3589069/attachments/4562673 2004329152457_150.gif]<br>
+
:<math>\vec{\mu}_S \ = g_e \mu_\mathrm{B} \frac{\vec{S}}{\hbar}=g\frac{e}{2 m_{e}} \ \vec{S}</math>
 +
* The g factor sets the strength of an electron’s interaction with a magnetic field.
  
 
 
  
* The g factor sets the strength of an electron’s interaction with a magnetic field.
+
===classical vs quantum===
 
* In classical physics (left) magnetic lines of force (perpendicular to the page) induce a curvature in the electron’s path.
 
* In classical physics (left) magnetic lines of force (perpendicular to the page) induce a curvature in the electron’s path.
 
* In quantum electrodynamics (right) the electron interacts with the field by emitting or absorbing a photon.
 
* In quantum electrodynamics (right) the electron interacts with the field by emitting or absorbing a photon.
 +
[/pages/3589069/attachments/4562673 2004329152457_150.gif]
 +
* vertex correction
 +
$$g = 2 ( 1 + \alpha/2\pi)$$ where $$\alpha= e^2/(4\pi \hbar c) \sim 1/137.036$$ is the fine structure constant
 +
* http://www.wolframalpha.com/input/?i=1%2F%28137*2pi%29
 
* The event is represented in a Feynman diagram, where space extends along the horizontal axis and time moves up the vertical axis.
 
* The event is represented in a Feynman diagram, where space extends along the horizontal axis and time moves up the vertical axis.
* <math>g/2=1+c_1\frac{\alpha}{2\pi}+c_2(\frac{\alpha}{2\pi})^2+c_3(\frac{\alpha}{2\pi})^3+\cdots=1.00115965219+\cdots</math>
+
$$g/2=1+c_1\frac{\alpha}{2\pi}+c_2(\frac{\alpha}{2\pi})^2+c_3(\frac{\alpha}{2\pi})^3+\cdots=1.00115965219+\cdots$$
* http://www.wolframalpha.com/input/?i=fine+structure+constant
 
* http://www.wolframalpha.com/input/?i=1/fine+structure+constant
 
  
 
 
  
 
* [http://docs.google.com/viewer?a=v&q=cache:5hOX9DCrL7sJ:www.physics.ohio-state.edu/%7Ekass/P780_L3_sp03.ppt+anamalous+magnetic+moment+electron+feynman+diagram&hl=ko&gl=us&pid=bl&srcid=ADGEEShmuOjISGxcCejbd6l7kWuRiTY7AtBHwKpZ_Zec4dSTPlJ8kqZSA80srABAl8PEFKnJJVfrawIHlkI0Z9S5wA1ArJMpmMERZp3I3ppK4BN5drRWx4mJi8VTW_wf8xjrs3v1VOqX&sig=AHIEtbTIAIEubf5ZHYPXPv4aE6ImvmxEVw http://docs.google.com/viewer?a=v&q=cache:5hOX9DCrL7sJ:www.physics.ohio-state.edu/~kass/P780_L3_sp03.ppt+anamalous+magnetic+moment+electron+feynman+diagram&hl=ko&gl=us&pid=bl&srcid=ADGEEShmuOjISGxcCejbd6l7kWuRiTY7AtBHwKpZ_Zec4dSTPlJ8kqZSA80srABAl8PEFKnJJVfrawIHlkI0Z9S5wA1ArJMpmMERZp3I3ppK4BN5drRWx4mJi8VTW_wf8xjrs3v1VOqX&sig=AHIEtbTIAIEubf5ZHYPXPv4aE6ImvmxEVw]
 
* [http://docs.google.com/viewer?a=v&q=cache:5hOX9DCrL7sJ:www.physics.ohio-state.edu/%7Ekass/P780_L3_sp03.ppt+anamalous+magnetic+moment+electron+feynman+diagram&hl=ko&gl=us&pid=bl&srcid=ADGEEShmuOjISGxcCejbd6l7kWuRiTY7AtBHwKpZ_Zec4dSTPlJ8kqZSA80srABAl8PEFKnJJVfrawIHlkI0Z9S5wA1ArJMpmMERZp3I3ppK4BN5drRWx4mJi8VTW_wf8xjrs3v1VOqX&sig=AHIEtbTIAIEubf5ZHYPXPv4aE6ImvmxEVw http://docs.google.com/viewer?a=v&q=cache:5hOX9DCrL7sJ:www.physics.ohio-state.edu/~kass/P780_L3_sp03.ppt+anamalous+magnetic+moment+electron+feynman+diagram&hl=ko&gl=us&pid=bl&srcid=ADGEEShmuOjISGxcCejbd6l7kWuRiTY7AtBHwKpZ_Zec4dSTPlJ8kqZSA80srABAl8PEFKnJJVfrawIHlkI0Z9S5wA1ArJMpmMERZp3I3ppK4BN5drRWx4mJi8VTW_wf8xjrs3v1VOqX&sig=AHIEtbTIAIEubf5ZHYPXPv4aE6ImvmxEVw]
  
 
+
 
 +
 
 
==Feynmann diagrams==
 
==Feynmann diagrams==
 
 
 
 
56번째 줄: 84번째 줄:
 
===two-loop diagrams===
 
===two-loop diagrams===
  
*  7 two-loop diagrams<br>[/pages/3589069/attachments/4562669 2004329153354_150.gif]<br>[/pages/7141159/attachments/4562733 I15-62-g2c.jpg]<br>
+
*  7 two-loop diagrams<br>[/pages/3589069/attachments/4562669 2004329153354_150.gif]<br>[/pages/7141159/attachments/4562733 I15-62-g2c.jpg]
  
 
 
 
 
85번째 줄: 113번째 줄:
 
* [http://www.strings.ph.qmul.ac.uk/%7Ebigdraw/feynman/slide3.html http://www.strings.ph.qmul.ac.uk/~bigdraw/feynman/slide3.html][http://eskesthai.blogspot.com/2010/12/muon.html ]
 
* [http://www.strings.ph.qmul.ac.uk/%7Ebigdraw/feynman/slide3.html http://www.strings.ph.qmul.ac.uk/~bigdraw/feynman/slide3.html][http://eskesthai.blogspot.com/2010/12/muon.html ]
  
 
 
  
 
+
==anaomalous muon magnetic dipole moment==
 
 
 
 
  
===anaomalous muon magnetic dipole moment===
+
* anaomalous muon magnetic dipole moment is still unknown
 +
* http://eskesthai.blogspot.com/2010/12/muon.html
  
*  anaomalous muon magnetic dipole moment is still unknown<br>
 
* http://eskesthai.blogspot.com/2010/12/muon.html<br>
 
  
 
 
  
 
 
 
 
102번째 줄: 125번째 줄:
 
==memo==
 
==memo==
  
* [http://aias.us/documents/uft/a18thpaper.pdf Calculation of the Anomalous Magnetic Moment of the Electron from the Evans-Unified Field Theory]<br>
+
* [http://aias.us/documents/uft/a18thpaper.pdf Calculation of the Anomalous Magnetic Moment of the Electron from the Evans-Unified Field Theory]
  
 
 
 
 
120번째 줄: 143번째 줄:
 
* http://en.wikipedia.org/wiki/G-factor_%28physics%29
 
* http://en.wikipedia.org/wiki/G-factor_%28physics%29
 
* http://en.wikipedia.org/wiki/Anomalous_magnetic_dipole_moment
 
* http://en.wikipedia.org/wiki/Anomalous_magnetic_dipole_moment
 +
* http://en.wikipedia.org/wiki/Bohr_magneton
  
 
 
 
  
 
==expositions==
 
==expositions==
128번째 줄: 150번째 줄:
 
* Brian Hayes, “g-OLOGY,” American Scientist 92, no. 3 (2004): 212. http://www.americanscientist.org/issues/num2/g-ology/1
 
* Brian Hayes, “g-OLOGY,” American Scientist 92, no. 3 (2004): 212. http://www.americanscientist.org/issues/num2/g-ology/1
  
 
 
  
 
 
  
 
==articles==
 
==articles==
 +
*  Broadhurst, D. J, and D. Kreimer. 1996. Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. hep-th/9609128 (September 16). doi:doi:[http://dx.doi.org/10.1016/S0370-2693%2896%2901623-1 10.1016/S0370-2693(96)01623-1]. http://arxiv.org/abs/hep-th/9609128.
 +
* 1948 슈와잉거 (J. Schwinger, Phys.Rev. 73(1948) 416L)
  
*  Broadhurst, D. J, and D. Kreimer. 1996. Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. hep-th/9609128 (September 16). doi:doi:[http://dx.doi.org/10.1016/S0370-2693%2896%2901623-1 10.1016/S0370-2693(96)01623-1]. http://arxiv.org/abs/hep-th/9609128.
 
  
 
+
==books==
 +
* Mandl, Franz, and Graham Shaw. 2010. Quantum Field Theory. John Wiley & Sons. http://books.google.de/books/about/Quantum_Field_Theory.html?id=Ef4zDW1V2LkC&redir_esc=y
 +
** chapter 9
  
  

2013년 12월 18일 (수) 15:28 판

introduction

  • amplitude = sum of integrals = \(\sum_{n\text{ loops}}\) sum of integrals
  • anomalous electron magnetic dipole moment 1.00115965219
  • theoretical computation matches 11 digits with experiments
  • as n grows, number of Feynman diagrams grows exponentially
  • integrals are becoming difficult

Lande's question

  • Bohr magneton \(\mu_0=e\hbar /2mc\)
  • spin magnetic dipole moment \(\mu_s\)
  • Q. \(\mu_s=\mu_0\) ? (Back and Lande 1925)
  • We define $g$ to be the gyromagnetic ratio

\[\mu_s=\frac{g\mu_0}{2}\]


classical magnetic moment

  • read spin system first
  • gyromagnetic ratio is defined as "magnetic dipole moment"/"angular momentum"

\[\gamma = \mu/L=-e/2m_e\] [/pages/7141159/attachments/4562863 I15-62-g20.jpg]


orbital

  • Let $e$, $m_e$, $v$, and $r$ be the electron's charge, mass, velocity, and radius, respectively.
  • A classical electron moving around a nucleus in a circular orbit
    • orbital angular momentum, \(L=m_evr\)
    • magnetic dipole moment, \(\mu= -evr/2\)
  • we get $\gamma=\mu/L=-e/2m_e$

spin

  • A classical electron of homogeneous mass and charge density rotating about a symmetry axis
    • spin angular momentum, \(L=(3/5)m_eR^2\Omega\)
    • magnetic dipole moment, \(\mu= -(3/10)eR^2\Omega\), where $R$ and $\Omega$ are the electron's classical radius and rotating frequency
  • we get \(\gamma = \mu/L=-e/2m_e\)


anamalous electron magnetic dipole moment

Dirac theory

  • In Dirac’s theory a point like spin 1/2 object of electric charge $q$ and mass $m$ has a magnetic moment

\[\mathbf{\mu}=q\mathbf{S}/m\]

  • so the Bohr magneton of the electron becomes

\[\mu_\mathrm{B} = {{e \hbar} \over {2 m_\mathrm{e}}}\] since the spin of the electron is \(S=\frac{\hbar}{2}\)


g-factor

  • there are correction terms to the spin magnetic moment of the electron as shown by experiments
  • actual spin magnetic moment of the electron involves the spin g-factor (gyromagnetic ratio)

\[\vec{\mu}_S \ = g_e \mu_\mathrm{B} \frac{\vec{S}}{\hbar}=g\frac{e}{2 m_{e}} \ \vec{S}\]

  • The g factor sets the strength of an electron’s interaction with a magnetic field.


classical vs quantum

  • In classical physics (left) magnetic lines of force (perpendicular to the page) induce a curvature in the electron’s path.
  • In quantum electrodynamics (right) the electron interacts with the field by emitting or absorbing a photon.

[/pages/3589069/attachments/4562673 2004329152457_150.gif]

  • vertex correction

$$g = 2 ( 1 + \alpha/2\pi)$$ where $$\alpha= e^2/(4\pi \hbar c) \sim 1/137.036$$ is the fine structure constant

$$g/2=1+c_1\frac{\alpha}{2\pi}+c_2(\frac{\alpha}{2\pi})^2+c_3(\frac{\alpha}{2\pi})^3+\cdots=1.00115965219+\cdots$$



Feynmann diagrams

 

tree level and one-loop diagrams

  • 1 one-loop diagram
    [/pages/7141159/attachments/4563145 2004329152921_150.gif]
  • Feynman, Julian Schwinger, Sin-Itiro Tomonaga and Freeman Dyson
  • Schwinger showed that the one-loop contribution to the "anomalous magnetic moment" of the electron is \(\alpha/{2\pi}=0.00116\cdots\)
  • Schwinger, Julian. 1948. On Quantum-Electrodynamics and the Magnetic Moment of the Electron. Physical Review 73, no. 4 (February 15): 416. doi:10.1103/PhysRev.73.416
     
  • http://www.wolframalpha.com/input/?i=fine+structure+constant%2F%282pi%29

 

 

two-loop diagrams

  • 7 two-loop diagrams
    [/pages/3589069/attachments/4562669 2004329153354_150.gif]
    [/pages/7141159/attachments/4562733 I15-62-g2c.jpg]

 

 

three-loop diagrams

  • 72 three-loop diagrams
  • [/pages/3589069/attachments/4562671 200432915395_150.gif]
  • Kinoshita, Toichiro. 1995. New Value of the alpha^{3} Electron Anomalous Magnetic Moment. Physical Review Letters 75, no. 26 (December 25): 4728. doi:10.1103/PhysRevLett.75.4728
     


four-loop diagrams

  •  891 diagrams

 

 

five-loop Feynman diagrams


anaomalous muon magnetic dipole moment


 

memo

 

 

related items

 

 

computational resource


encyclopedia


expositions


articles


books