"Kac-Wakimoto modules"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
19번째 줄: | 19번째 줄: | ||
==related items== | ==related items== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==articles== | ==articles== | ||
80번째 줄: | 30번째 줄: | ||
* Kac, V.G. and Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc.Natl.Acad.Sci. USA '''85''', 4956--4960(1988)[http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=0949675&loc=fromreflist MR0949675 (89j:17019)]<br> | * Kac, V.G. and Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc.Natl.Acad.Sci. USA '''85''', 4956--4960(1988)[http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=0949675&loc=fromreflist MR0949675 (89j:17019)]<br> | ||
* Kac, V.G. and Wakimoto, M.: <em style="">Classification of modular invariant representations of affine algebras</em>. Advanced Ser. Math. Phys. '''7''', Singapore: World Sci., 1989, pp. 138--177 [http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=1026952&loc=fromreflist MR1026952 (91a:17032)] | * Kac, V.G. and Wakimoto, M.: <em style="">Classification of modular invariant representations of affine algebras</em>. Advanced Ser. Math. Phys. '''7''', Singapore: World Sci., 1989, pp. 138--177 [http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=1026952&loc=fromreflist MR1026952 (91a:17032)] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | [[분류:Mock modular forms]] | |
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:Lie theory]] | [[분류:Lie theory]] |
2013년 3월 17일 (일) 15:41 판
introduction
- Lie superalgebras
- \(sl(2|1)\)
history
articles
- Kac V.G., Peterson D.H.: Infinite-dimensional Lie algebras, theta functions, and modular forms. Adv. Math. 53, 125–264 (1984)
[1] [2] [3] - Integrable highest weight modules over affine superalgebras and number theory
- Kac V.G., Wakimoto M., Lie theory and geometry, Program in Mathematics, vol. 123, pp. 415–456. Birkhäuser, Boston (1994)
- Kac V.G., Wakimoto M., Lie theory and geometry, Program in Mathematics, vol. 123, pp. 415–456. Birkhäuser, Boston (1994)
- Integrable highest weight modules over affine superalgebras and Appell’s function\
- Kac V.G., Wakimoto M, Commun. Math. Phys. 215(3), 631–682 (2001)
- Kac V.G., Wakimoto M, Commun. Math. Phys. 215(3), 631–682 (2001)
- Kac, V.G. and Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc.Natl.Acad.Sci. USA 85, 4956--4960(1988)MR0949675 (89j:17019)
- Kac, V.G. and Wakimoto, M.: Classification of modular invariant representations of affine algebras. Advanced Ser. Math. Phys. 7, Singapore: World Sci., 1989, pp. 138--177 MR1026952 (91a:17032)