"Kac-Wakimoto modules"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
22번째 줄: | 22번째 줄: | ||
==articles== | ==articles== | ||
− | + | * Kac, Victor G., and Minoru Wakimoto. ‘Representations of Affine Superalgebras and Mock Theta Functions III’. arXiv:1505.01047 [math], 5 May 2015. http://arxiv.org/abs/1505.01047. | |
− | * Kac V.G., Peterson D.H.: Infinite-dimensional Lie algebras, theta functions, and modular forms. Adv. Math. '''53''', 125–264 (1984)<br>[http://www.emis.de/MATH-item?0584.17007 ] [http://dx.doi.org/10.1016/0001-8708%2884%2990032-X ] [http://www.ams.org/mathscinet-getitem?mr=750341 ] | + | * Kac V.G., Peterson D.H.: Infinite-dimensional Lie algebras, theta functions, and modular forms. Adv. Math. '''53''', 125–264 (1984)<br>[http://www.emis.de/MATH-item?0584.17007 ] [http://dx.doi.org/10.1016/0001-8708%2884%2990032-X ] [http://www.ams.org/mathscinet-getitem?mr=750341 ] |
− | * [http://arxiv.org/abs/hep-th/9407057 Integrable highest weight modules over affine superalgebras and number theory] | + | * [http://arxiv.org/abs/hep-th/9407057 Integrable highest weight modules over affine superalgebras and number theory] |
− | ** Kac V.G., Wakimoto M., Lie theory and geometry, Program in Mathematics, vol. 123, pp. 415–456. Birkhäuser, Boston (1994) | + | ** Kac V.G., Wakimoto M., Lie theory and geometry, Program in Mathematics, vol. 123, pp. 415–456. Birkhäuser, Boston (1994) |
− | * [http://dx.doi.org/10.1007/s002200000315 Integrable highest weight modules over affine superalgebras and Appell’s function] | + | * [http://dx.doi.org/10.1007/s002200000315 Integrable highest weight modules over affine superalgebras and Appell’s function] |
− | ** Kac V.G., Wakimoto M, Commun. Math. Phys. '''215'''(3), 631–682 (2001) | + | ** Kac V.G., Wakimoto M, Commun. Math. Phys. '''215'''(3), 631–682 (2001) |
− | * Kac, V.G. and Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc.Natl.Acad.Sci. USA '''85''', 4956--4960(1988)[http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=0949675&loc=fromreflist MR0949675 (89j:17019)] | + | * Kac, V.G. and Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc.Natl.Acad.Sci. USA '''85''', 4956--4960(1988)[http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=0949675&loc=fromreflist MR0949675 (89j:17019)] |
* Kac, V.G. and Wakimoto, M.: <em style="">Classification of modular invariant representations of affine algebras</em>. Advanced Ser. Math. Phys. '''7''', Singapore: World Sci., 1989, pp. 138--177 [http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=1026952&loc=fromreflist MR1026952 (91a:17032)] | * Kac, V.G. and Wakimoto, M.: <em style="">Classification of modular invariant representations of affine algebras</em>. Advanced Ser. Math. Phys. '''7''', Singapore: World Sci., 1989, pp. 138--177 [http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=1026952&loc=fromreflist MR1026952 (91a:17032)] | ||
2015년 5월 5일 (화) 22:32 판
introduction
- Lie superalgebras
- \(sl(2|1)\)
history
articles
- Kac, Victor G., and Minoru Wakimoto. ‘Representations of Affine Superalgebras and Mock Theta Functions III’. arXiv:1505.01047 [math], 5 May 2015. http://arxiv.org/abs/1505.01047.
- Kac V.G., Peterson D.H.: Infinite-dimensional Lie algebras, theta functions, and modular forms. Adv. Math. 53, 125–264 (1984)
[1] [2] [3] - Integrable highest weight modules over affine superalgebras and number theory
- Kac V.G., Wakimoto M., Lie theory and geometry, Program in Mathematics, vol. 123, pp. 415–456. Birkhäuser, Boston (1994)
- Integrable highest weight modules over affine superalgebras and Appell’s function
- Kac V.G., Wakimoto M, Commun. Math. Phys. 215(3), 631–682 (2001)
- Kac, V.G. and Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc.Natl.Acad.Sci. USA 85, 4956--4960(1988)MR0949675 (89j:17019)
- Kac, V.G. and Wakimoto, M.: Classification of modular invariant representations of affine algebras. Advanced Ser. Math. Phys. 7, Singapore: World Sci., 1989, pp. 138--177 MR1026952 (91a:17032)