"Non-unitary c(2,k+2) minimal models"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (Pythagoras0 사용자가 Non-unitary c(2,k+2) minimal models 문서를 Non-unitary c(2,k+2) minimal models 문서로 옮겼습니다.) |
imported>Pythagoras0 |
||
14번째 줄: | 14번째 줄: | ||
* primary fields have conformal dimensions<br><math>h_j=-\frac{j(k-j)}{2(k+2)}</math>, <math>j\in \{0,1,\cdots,[k/2]\}</math><br> | * primary fields have conformal dimensions<br><math>h_j=-\frac{j(k-j)}{2(k+2)}</math>, <math>j\in \{0,1,\cdots,[k/2]\}</math><br> | ||
* effective central charge<br><math>c_{eff}=\frac{k-1}{k+2}</math><br> | * effective central charge<br><math>c_{eff}=\frac{k-1}{k+2}</math><br> | ||
− | * dilogarithm identity<br><math>\sum_{i=1}^{[k/2]}L(\frac{\sin^2\frac{\pi}{k+2}}{\sin^2\frac{(i+1)\pi}{k+2 | + | * dilogarithm identity<br><math>\sum_{i=1}^{[k/2]}L(\frac{\sin^2\frac{\pi}{k+2}}{\sin^2\frac{(i+1)\pi}{k+2}})=\frac{k-1}{k+2}\cdot \frac{\pi^2}{6}</math><br> |
* character functions<br><math>\chi_j(\tau)=q^{h_j-c/24}\prod_{n\neq 0,\pm(j+1)}(1-q^n)^{-1}</math><br> | * character functions<br><math>\chi_j(\tau)=q^{h_j-c/24}\prod_{n\neq 0,\pm(j+1)}(1-q^n)^{-1}</math><br> | ||
* to understand the factor <math>q^{h-c/24}</math>, look at the [[finite size effect]] page also<br> | * to understand the factor <math>q^{h-c/24}</math>, look at the [[finite size effect]] page also<br> | ||
− | * quantum dimension and there recurrence relation<br><math>d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2 | + | * quantum dimension and there recurrence relation<br><math>d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}</math> satisfies<br><math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math><br> |
2012년 9월 15일 (토) 12:58 판
introduction
- important
non-unitary \(c(2,k+2)\)'minimal models'
- central charge
\(c(2,k+2)=1-\frac{3k^2}{k+2}\)
\(k \geq 3\), odd - primary fields have conformal dimensions
\(h_j=-\frac{j(k-j)}{2(k+2)}\), \(j\in \{0,1,\cdots,[k/2]\}\) - effective central charge
\(c_{eff}=\frac{k-1}{k+2}\) - dilogarithm identity
\(\sum_{i=1}^{[k/2]}L(\frac{\sin^2\frac{\pi}{k+2}}{\sin^2\frac{(i+1)\pi}{k+2}})=\frac{k-1}{k+2}\cdot \frac{\pi^2}{6}\) - character functions
\(\chi_j(\tau)=q^{h_j-c/24}\prod_{n\neq 0,\pm(j+1)}(1-q^n)^{-1}\) - to understand the factor \(q^{h-c/24}\), look at the finite size effect page also
- quantum dimension and there recurrence relation
\(d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}\) satisfies
\(d_i^2=1+d_{i-1}d_{i+1}\) where \(d_0=1\), \(d_k=1\)
- (*choose k for c (2,k+2) minimal model*)k := 11
(*define Rogers dilogarithm*)
L[x_] := PolyLog[2, x] + 1/2 Log[x] Log[1 - x]
(*quantum dimension for minimal models*)
f[k_, i_] := (Sin[Pi/(k + 2)]/Sin[(i + 1) Pi/(k + 2)])^2
(*effective central charge*)
g[k_] := (k*Pi^2)/(2 (k + 2))
(*compare the results*)
N[Sum[L[f[k, i]], {i, 1, k - 1}] + Pi^2/6, 10]
N[g[k], 10]
d[k_, i_] := Sin[(i + 1) Pi/(k + 2)]/Sin[Pi/(k + 2)]
Table[{i, d[k, i]}, {i, 1, k}] // TableForm
Table[{i, N[(d[k, i])^2 - (1 + d[k, i - 1]*d[k, i + 1]), 10]}, {i, 1,
k}] // TableForm
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field