"Bruhat decomposition"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
6번째 줄: 6번째 줄:
  
 
Weyl group action 
 
Weyl group action 
 +
 +
The decomposition of G into strata G^{u,v} is 'good with respect to total positivity.
  
 
 
 
 
  
The decomposition of G into strata G^{u,v} is 'good with respect to total positivity.
+
 
 +
 
 +
<h5>Bruhat</h5>
  
 
 
 
 
104번째 줄: 108번째 줄:
 
<h5>expositions</h5>
 
<h5>expositions</h5>
  
* [http://www-math.mit.edu/%7Egyuri/papers/bru1.pdf http://www-math.mit.edu/~gyuri/papers/bru1.pdf]
+
* [http://www-math.mit.edu/%7Egyuri/papers/bru1.pdf ][http://www-math.mit.edu/%7Egyuri/papers/bru1.pdf http://www-math.mit.edu/~gyuri/papers/bru1.pdf]
* http://pages.uoregon.edu/dmoseley/talks/Lecture14.pdf
+
* Double Bruhat Cells http://pages.uoregon.edu/dmoseley/talks/Lecture14.pdf
 +
* Cluster Structures on Double Bruhat Cells http://pages.uoregon.edu/dmoseley/talks/Lecture15.pdf
 
* http://math.ucr.edu/home/baez/week186.html
 
* http://math.ucr.edu/home/baez/week186.html
 
* [http://www.math.harvard.edu/%7Eryanr/bruhat_row-reduction.pdf http://www.math.harvard.edu/~ryanr/bruhat_row-reduction.pdf]
 
* [http://www.math.harvard.edu/%7Eryanr/bruhat_row-reduction.pdf http://www.math.harvard.edu/~ryanr/bruhat_row-reduction.pdf]

2011년 7월 19일 (화) 15:38 판

introduction

double Bruhat cells

Bruhat order

Weyl group action 

The decomposition of G into strata G^{u,v} is 'good with respect to total positivity.

 

 

Bruhat

 

 

realization of finite type cluster algebra
  • Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. 0804.3303 (4월 21). http://arxiv.org/abs/0804.3303.

 

 

\(\mathbb{C}[L^{c,c^{-1}}]\) is a cluster algebra of finite type. It has the same type as Cartan matrix.

 

type A_{n}

(i) inite seed is given by x=(x_{[1,1]},\cdots,x_{[1,n]}), y=(y_1,\cdots,y_n), B=B(C)

(ii) The set of cluster variables is \{x_{[i,j]}|1\leq i\leq j\leq n \}

(iii) The exchange relations

x_{[i,k]}x_{[j,l]} = y_{j-1}y_{j}\cdots y_{k} x_{[i,j-2]}jx_{[i,j-2]}+x_{[i,l]}x_{[j,l]} for 1\leq i\leq j-1\leq k\leq l-1\leq n

 

 

  • remark

x_{[i,j]} corresponds to the diagonal between i and j in the triangulation of regular (n+3)-gon

 

example

 

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links