"Bruhat decomposition"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 +
* double Bruhat cells
 +
* Bruhat order
 +
* Weyl group action 
 +
* The decomposition of G into strata G^{u,v} is 'good with respect to total positivity.
  
double Bruhat cells
 
  
Bruhat order
 
 
Weyl group action 
 
 
The decomposition of G into strata G^{u,v} is 'good with respect to total positivity.
 
 
 
 
 
 
 
  
 
==Bruhat cell==
 
==Bruhat cell==
 
+
* G=GL_{n}
G=GL_{n}
+
* B : upper triangular matrices \in G
 
+
* B_{_} : lower triangular matrices in G
B : upper triangular matrices \in G
+
* W=S_{n} we can think of it as a subgroup of G
 
+
* Double cosets <math>BwB</math> and <math>B_{-}wB_{-}</math> are called Bruhat cells.
B_{_} : lower triangular matrices in G
 
 
 
W=S_{n} we can think of it as a subgroup of G
 
 
 
Double cosets <math>BwB</math> and <math>B_{-}wB_{-}</math> are called Bruhat cells.
 
 
 
 
 
  
 
 
 
 
58번째 줄: 45번째 줄:
 
(iii) The exchange relations
 
(iii) The exchange relations
  
x_{[i,k]}x_{[j,l]} = y_{j-1}y_{j}\cdots y_{k} x_{[i,j-2]}jx_{[i,j-2]}+x_{[i,l]}x_{[j,l]} for 1\leq i\leq j-1\leq k\leq l-1\leq n
+
$x_{[i,k]}x_{[j,l]} = y_{j-1}y_{j}\cdots y_{k} x_{[i,j-2]}jx_{[i,j-2]}+x_{[i,l]}x_{[j,l]}$ for $1\leq i\leq j-1\leq k\leq l-1\leq n$
  
 
 
 
 
64번째 줄: 51번째 줄:
 
 
 
 
  
*remark
+
* remark
  
 
x_{[i,j]} corresponds to the diagonal between i and j in the triangulation of regular (n+3)-gon
 
x_{[i,j]} corresponds to the diagonal between i and j in the triangulation of regular (n+3)-gon
73번째 줄: 60번째 줄:
  
 
* [[double Bruhat cell example]]
 
* [[double Bruhat cell example]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==history==
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
  
 
 
 
 
104번째 줄: 77번째 줄:
 
* http://en.wikipedia.org/wiki/Longest_element_of_a_Coxeter_group
 
* http://en.wikipedia.org/wiki/Longest_element_of_a_Coxeter_group
 
* http://eom.springer.de/b/b017690.htm
 
* http://eom.springer.de/b/b017690.htm
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/[http://eom.springer.de/ ]
 
* http://www.proofwiki.org/wiki/
 
 
 
 
 
 
 
 
  
==books==
 
  
 
 
 
 
  
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
 
 
 
 
 
 
  
 
==expositions==
 
==expositions==
138번째 줄: 95번째 줄:
  
 
==articles==
 
==articles==
 
 
*  Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303.<br>
 
*  Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. <em>0804.3303</em> (4월 21). http://arxiv.org/abs/0804.3303.<br>
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
  
 
 
  
 
 
 
 
156번째 줄: 104번째 줄:
 
* http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk
 
* http://mathoverflow.net/questions/15438/a-slick-proof-of-the-bruhat-decomposition-for-gl-nk
 
* http://mathoverflow.net/questions/28569/is-there-a-morse-theory-proof-of-the-bruhat-decomposition
 
* http://mathoverflow.net/questions/28569/is-there-a-morse-theory-proof-of-the-bruhat-decomposition
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
  
==links==
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:cluster algebra]]
 
[[분류:cluster algebra]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math]]
 
[[분류:math]]

2013년 6월 26일 (수) 12:43 판

introduction

  • double Bruhat cells
  • Bruhat order
  • Weyl group action 
  • The decomposition of G into strata G^{u,v} is 'good with respect to total positivity.


Bruhat cell

  • G=GL_{n}
  • B : upper triangular matrices \in G
  • B_{_} : lower triangular matrices in G
  • W=S_{n} we can think of it as a subgroup of G
  • Double cosets \(BwB\) and \(B_{-}wB_{-}\) are called Bruhat cells.

 

double Bruhat cell (DBC)

  • \(G^{u,v} =BuB\cap B_{-}vB_{-}\)
  • \(G=\cup_{u,v\in W\times W} G^{u,v}\) (disjoint union)

 

 

realization of finite type cluster algebra

  • Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. 0804.3303 (4월 21). http://arxiv.org/abs/0804.3303.

 

 

\(\mathbb{C}[L^{c,c^{-1}}]\) is a cluster algebra of finite type. It has the same type as Cartan matrix.

 

type A_{n}

(i) inite seed is given by x=(x_{[1,1]},\cdots,x_{[1,n]}), y=(y_1,\cdots,y_n), B=B(C)

(ii) The set of cluster variables is \{x_{[i,j]}|1\leq i\leq j\leq n \}

(iii) The exchange relations

$x_{[i,k]}x_{[j,l]} = y_{j-1}y_{j}\cdots y_{k} x_{[i,j-2]}jx_{[i,j-2]}+x_{[i,l]}x_{[j,l]}$ for $1\leq i\leq j-1\leq k\leq l-1\leq n$

 

 

  • remark

x_{[i,j]} corresponds to the diagonal between i and j in the triangulation of regular (n+3)-gon

 

example

 

 

related items

 

 

encyclopedia


 


expositions

 

 

articles

  • Yang, Shih-Wei, 와/과Andrei Zelevinsky. 2008. “Cluster algebras of finite type via Coxeter elements and principal minors”. 0804.3303 (4월 21). http://arxiv.org/abs/0804.3303.


 

question and answers(Math Overflow)