"Torus knots"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				imported>Pythagoras0  잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로)  | 
				||
| 29번째 줄: | 29번째 줄: | ||
* http://www.scholarpedia.org/  | * http://www.scholarpedia.org/  | ||
* http://www.proofwiki.org/wiki/  | * http://www.proofwiki.org/wiki/  | ||
| − | + | ||
2012년 11월 1일 (목) 13:12 판
introduction
- torus knot \[K_{p,q}\]
 - The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold
 - Seifert fibered space
 - S^1-bundle over an orbifold
 
 
 
history
 
 
encyclopedia
books
- 2010년 books and articles
 - http://gigapedia.info/1/
 - http://gigapedia.info/1/
 - http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
articles
- Proof of the volume conjecture for torus knots
- R. M. Kashaev and O. Tirkkonen, 2003
 
 
- Torus knot and minimal model
- Kazuhiro Hikami, a and Anatol N. Kirillov, 2003
 
 - Kazuhiro Hikami, a and Anatol N. Kirillov, 2003
 
- http://www.ams.org/mathscinet
 - [1]http://www.zentralblatt-math.org/zmath/en/
 - http://arxiv.org/
 - http://www.pdf-search.org/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/
 
 
 
question and answers(Math Overflow)
 
 
blogs
- 구글 블로그 검색
 - http://ncatlab.org/nlab/show/HomePage
 
 
 
experts on the field