"Derived functor"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  (새 문서: ==introduction== * basic tool to define cohomology theory * extend a left invariant functor to get a derived functor * then we get a cohomology theory * e.g. sheaf cohomology of a top...)  | 
				imported>Pythagoras0   | 
				||
| 19번째 줄: | 19번째 줄: | ||
M\mapsto M^{G}  | M\mapsto M^{G}  | ||
$$  | $$  | ||
| + | |||
| + | |||
| + | ==related items==  | ||
| + | * [[Ext functor]]  | ||
| + | * [[Free resolutions]]  | ||
| + | |||
[[분류:Abstract concepts]]  | [[분류:Abstract concepts]]  | ||
2013년 10월 8일 (화) 10:15 판
introduction
- basic tool to define cohomology theory
 - extend a left invariant functor to get a derived functor
 - then we get a cohomology theory
 - e.g. sheaf cohomology of a topological space X with coefficients in a sheaf $\mathcal F$ = the right derived functor of the global section functor
 
left invariant functors
global section functor
- a functor from sheaves on $X$ to abelian groups defined by
 
$$ \mathcal F \mapsto H^{0}(X, \mathcal F) $$
invariants
- $G$ : group
 - from modules of $G$ to abelian groups
 
$$ M\mapsto M^{G} $$