"거듭제곱의 합을 구하는 공식"의 두 판 사이의 차이
117번째 줄: | 117번째 줄: | ||
* [[차분방정식(difference equation) 과 유한미적분학 (finite calculus)|Calculus of Finite differences]] | * [[차분방정식(difference equation) 과 유한미적분학 (finite calculus)|Calculus of Finite differences]] | ||
− | * | + | * [[#]] |
* Umbral calculus | * Umbral calculus | ||
2009년 5월 1일 (금) 15:25 판
간단한 소개
- 1부터 n까지의 k-거듭제곱의 합을 구하는 공식.
- 베르누이 수를 사용하여 표현가능함
베르누이 수
베르누이 수의 생성함수는 다음과 같이 주어진다.
\(\frac{t e^{t}}{e^t-1}= \sum_{n=0}^\infty B_n\frac{t^n}{n!}\)
처음 몇 베르누이 수는 다음과 같다.
\(B_0=1\) , \(B_1=-1/2\), \(B_2=1/6\), \(B_3=0\),\(B_4=-\frac{1}{30}\), \(B_5=0\),\(B_6=\frac{1}{42}\)
베르누이 다항식
베르누이 다항식의 생성함수는 다음과 같이 정의된다.
\(\frac{t e^{xt}}{e^t-1}= \sum_{n=0}^\infty B_n(x) \frac{t^n}{n!}\)
좀더 자세히 쓰면
\(B_n(x)=\sum_{k=0}^n {n \choose k}B_k x^{n-k}\)
여기서 \(B_k\) 는 베르누이 수
처음 몇 베르누이 다항식은 다음과 같다.
\(B_0(x)=1\)
\(B_1(x)=x-1/2\)
\(B_2(x)=x^2-x+1/6\)
\(B_3(x)=x^3-\frac{3}{2}x^2+\frac{1}{2}x\\)
\(B_4(x)=x^4-2x^3+x^2-\frac{1}{30}\)
\(B_5(x)=x^5-\frac{5}{2}x^4+\frac{5}{3}x^3-\frac{1}{6}x\)
\(B_6(x)=x^6-3x^5+\frac{5}{2}x^4-\frac{1}{2}x^2+\frac{1}{42}\)
계차수열
\(\Delta B_n(x)=nx^{n-1}\)
거듭제곱의 합
Calculus of Finite differences 의 정리에 의하면, \(\Delta F=f\) 인 두 수열에 대하여
\(\sum_a^{b-1}f(n)=F(b)-F(a)\)
이 성립한다.
이를 베르누이 다항식에 적용하면,
\(\sum_0^{n-1}k^r=\frac{1}{r+1}(B_{r+1}(n)-B_{r+1}(0))\)
관련된 학부 과목과 미리 알고 있으면 좋은 것들
관련된 대학원 과목
관련된 다른 주제들
- Calculus of Finite differences
- #
- Umbral calculus
표준적인 도서 및 추천도서
위키링크
참고할만한 자료
- Using the Finite Difference Calculus to Sum Powers of Integers
- Lee Zia
- The College Mathematics Journal, Vol. 22, No. 4 (Sep., 1991), pp. 294-300
- Euler's formula nth Differences of Powers
- H. W. Gould
- The American Mathematical Monthly, Vol. 85, No. 6 (Jun. - Jul., 1978), pp. 450-467
- Bernoulli's Identity without Calculus
- Kenneth S. Williams
- Mathematics Magazine, Vol. 70, No. 1 (Feb., 1997), pp. 47-50
- The Umbral Method: A Survey of Elementary Mnemonic and Manipulative Uses
- Andrew P. Guinand
- The American Mathematical Monthly, Vol. 86, No. 3 (Mar., 1979), pp. 187-195
- A Symmetry of Power Sum Polynomials and Bernoulli Numbers
- Hans J. H. Tuenter
- The American Mathematical Monthly, Vol. 108, No. 3 (Mar., 2001), pp. 258-261