"Path algebras of quivers"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (새 문서: ==introduction== * Q quiver * a path in Q is a sequence $(i|\alpha_1,\alpha_2,\cdots,\alpha_l|j)$ such that $s(\alpha_i)=t(\alpha_{i-1})$ for all $i = 2, \cdots, l$ * the path algebr...) |
imported>Pythagoras0 |
||
11번째 줄: | 11번째 줄: | ||
==computational resource== | ==computational resource== | ||
* https://docs.google.com/file/d/0B8XXo8Tve1cxVUgxZU5CUWVwdTA/edit?usp=drivesdk | * https://docs.google.com/file/d/0B8XXo8Tve1cxVUgxZU5CUWVwdTA/edit?usp=drivesdk | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 07:32 판
introduction
- Q quiver
- a path in Q is a sequence $(i|\alpha_1,\alpha_2,\cdots,\alpha_l|j)$ such that $s(\alpha_i)=t(\alpha_{i-1})$ for all $i = 2, \cdots, l$
- the path algebra of kQ of Q is the k-algebra with basis the set of all paths in Q with multiplication in the basis given by concatenation of two paths
- path algebra of a quiver
- given a quiver Q, a path p is a sequence of arrows with some conditions
- path algebra : set of all k-linear combinations of all paths (including e_i's)
- p_1p_2 will correspond to a composition \(p_2\circ p_1\) of two maps (\(U\overset{P_2}{\rightarrow }V\overset{P_1}{\rightarrow }W\))