"Generalized Cartan matrix"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
5번째 줄: 5번째 줄:
  
 
==example==
 
==example==
* $G_2$ Cartan matrix
+
* Cartan matrix of $G_2$
 
$$
 
$$
 
A=\left(
 
A=\left(
23번째 줄: 23번째 줄:
 
\right)
 
\right)
 
$$
 
$$
* $DA=AD^{t}$
+
* Then $DA=A^{t}D$ is a symmetric matrix
 +
$$
 +
\left(
 +
\begin{array}{cc}
 +
6 & -3 \\
 +
-3 & 2 \\
 +
\end{array}
 +
\right)
 +
$$
  
  

2013년 10월 8일 (화) 10:35 판

introduction

  • Cartan matrix encodes relative lenghths and angles among vectors in the root system.
  • symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms


example

  • Cartan matrix of $G_2$

$$ A=\left( \begin{array}{cc} 2 & -1 \\ -3 & 2 \\ \end{array} \right) $$

  • take $D$ as follows :

$$ D=\left( \begin{array}{cc} 3 & 0 \\ 0 & 1 \\ \end{array} \right) $$

  • Then $DA=A^{t}D$ is a symmetric matrix

$$ \left( \begin{array}{cc} 6 & -3 \\ -3 & 2 \\ \end{array} \right) $$


related items


Killing form


computational resource