"Jacobi's theta function from a representation theoretic viewpoint"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * $g\in \mathbb{Z}$, $g\geq 1$ | ||
+ | * Heisenberg algebra and group $H$ | ||
+ | * Weil representation on $L^2(\mathbb{R}^g)$ | ||
+ | * a smooth vector $f_{\Omega}\in \mathcal{H}_{\infty}$ | ||
+ | * a functional $\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}$ | ||
+ | * then $\theta(\mathbf{x},\Omega)$ appears as pairing | ||
+ | $$ | ||
+ | \theta(\mathbf{x},\Omega)=\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle | ||
+ | $$ | ||
+ | * modular transformation properties follows from the action of $Mp(2g,\mathbb{R})$ on $\mathfrak{h}_g$ and $H$ | ||
+ | |||
+ | |||
==related items== | ==related items== | ||
* [[Segal-Shale-Weil representation]] | * [[Segal-Shale-Weil representation]] |
2015년 5월 19일 (화) 06:42 판
introduction
- $g\in \mathbb{Z}$, $g\geq 1$
- Heisenberg algebra and group $H$
- Weil representation on $L^2(\mathbb{R}^g)$
- a smooth vector $f_{\Omega}\in \mathcal{H}_{\infty}$
- a functional $\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}$
- then $\theta(\mathbf{x},\Omega)$ appears as pairing
$$ \theta(\mathbf{x},\Omega)=\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle $$
- modular transformation properties follows from the action of $Mp(2g,\mathbb{R})$ on $\mathfrak{h}_g$ and $H$