"Jacobi's theta function from a representation theoretic viewpoint"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
2번째 줄: | 2번째 줄: | ||
* $g\in \mathbb{Z}$, $g\geq 1$ | * $g\in \mathbb{Z}$, $g\geq 1$ | ||
* Heisenberg algebra and group $H$ | * Heisenberg algebra and group $H$ | ||
+ | * action of $Sp(2g,\mathbb{R})$ | ||
* Weil representation on $L^2(\mathbb{R}^g)$ | * Weil representation on $L^2(\mathbb{R}^g)$ | ||
* a smooth vector $f_{\Omega}\in \mathcal{H}_{\infty}$ | * a smooth vector $f_{\Omega}\in \mathcal{H}_{\infty}$ | ||
15번째 줄: | 16번째 줄: | ||
* [[Segal-Shale-Weil representation]] | * [[Segal-Shale-Weil representation]] | ||
* [[Howe duality]] | * [[Howe duality]] | ||
+ | * [[Heisenberg group and Heisenberg algebra]] | ||
[[분류:theta]] | [[분류:theta]] | ||
[[분류:Lie theory]] | [[분류:Lie theory]] | ||
[[분류:Talks and lecture notes]] | [[분류:Talks and lecture notes]] | ||
− |
2015년 5월 19일 (화) 06:44 판
introduction
- $g\in \mathbb{Z}$, $g\geq 1$
- Heisenberg algebra and group $H$
- action of $Sp(2g,\mathbb{R})$
- Weil representation on $L^2(\mathbb{R}^g)$
- a smooth vector $f_{\Omega}\in \mathcal{H}_{\infty}$
- a functional $\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}$
- then $\theta(\mathbf{x},\Omega)$ appears as pairing
$$ \theta(\mathbf{x},\Omega)=\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle $$
- modular transformation properties follows from the action of $Mp(2g,\mathbb{R})$ on $\mathfrak{h}_g$ and $H$