"Jacobi's theta function from a representation theoretic viewpoint"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
4번째 줄: | 4번째 줄: | ||
* Schrodinger representation of $H(2g, \mathbb{R})$ on $\mathcal{H}=L^2(\mathbb{R}^g)$ | * Schrodinger representation of $H(2g, \mathbb{R})$ on $\mathcal{H}=L^2(\mathbb{R}^g)$ | ||
* Stone-von Neumann theorem induces an action of $Sp(2g,\mathbb{R})$ on $\mathcal{H}$ | * Stone-von Neumann theorem induces an action of $Sp(2g,\mathbb{R})$ on $\mathcal{H}$ | ||
− | * but this is only a projective representation | + | ** but this is only a projective representation |
− | * | + | * we can turn it into a genuine representation of the metaplectic group and we call it the Weil representation |
* a smooth vector $f_{\Omega}\in \mathcal{H}_{\infty}$, Schwarz space | * a smooth vector $f_{\Omega}\in \mathcal{H}_{\infty}$, Schwarz space | ||
* a functional $\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}$ | * a functional $\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}$ |
2015년 5월 19일 (화) 09:31 판
introduction
- $g\in \mathbb{Z}$, $g\geq 1$
- Heisenberg group $H(2g, \mathbb{R})$ and its Lie algebra
- Schrodinger representation of $H(2g, \mathbb{R})$ on $\mathcal{H}=L^2(\mathbb{R}^g)$
- Stone-von Neumann theorem induces an action of $Sp(2g,\mathbb{R})$ on $\mathcal{H}$
- but this is only a projective representation
- we can turn it into a genuine representation of the metaplectic group and we call it the Weil representation
- a smooth vector $f_{\Omega}\in \mathcal{H}_{\infty}$, Schwarz space
- a functional $\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}$
- then $\theta(\mathbf{x},\Omega)$ appears as pairing
$$ \theta(\mathbf{x},\Omega)=\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle $$
- modular transformation properties follows from the action of $Mp(2g,\mathbb{R})$ on $\mathfrak{h}_g$ and $H$