"Dwork pencil of quintic threefolds"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * 1,1,27,2875, 698005, | ||
+ | * On a general quintic threefold $Y\subset \mathbb{P}^4$ there are 2875 lines | ||
+ | |||
+ | |||
+ | ==memo== | ||
+ | * http://mathoverflow.net/questions/160561/the-classical-number-2875-of-lines-on-the-quintic-as-a-dt-invariant/160846#160846 | ||
+ | |||
+ | |||
==expositions== | ==expositions== | ||
− | * https://docs.google.com/file/d/0B8XXo8Tve1cxUV9VQ3dtZjhMYjA/edit | + | * Pandharipande, R., and R. P. Thomas. 2011. “13/2 Ways of Counting Curves.” arXiv:1111.1552 [hep-Th], November. http://arxiv.org/abs/1111.1552. |
+ | * Zagier, https://docs.google.com/file/d/0B8XXo8Tve1cxUV9VQ3dtZjhMYjA/edit | ||
2014년 4월 15일 (화) 18:41 판
introduction
- 1,1,27,2875, 698005,
- On a general quintic threefold $Y\subset \mathbb{P}^4$ there are 2875 lines
memo
expositions
- Pandharipande, R., and R. P. Thomas. 2011. “13/2 Ways of Counting Curves.” arXiv:1111.1552 [hep-Th], November. http://arxiv.org/abs/1111.1552.
- Zagier, https://docs.google.com/file/d/0B8XXo8Tve1cxUV9VQ3dtZjhMYjA/edit
articles
- Candelas, Philip, Xenia de la Ossa, Bert van Geemen, and Duco van Straten. 2012. “Lines on the Dwork Pencil of Quintic Threefolds.” Advances in Theoretical and Mathematical Physics 16 (6): 1779–1836.
- Musta\ct\va, Anca. 2013. “Degree 1 Curves in the Dwork Pencil and the Mirror Quintic.” Mathematische Annalen 355 (1): 97–130. doi:10.1007/s00208-011-0668-x.