"Dwork pencil of quintic threefolds"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
+ | * The derived category of coherent sheaves on a general quintic threefold is a central object in mirror symmetry | ||
* 1,1,27,2875, 698005, | * 1,1,27,2875, 698005, | ||
* On a general quintic threefold $Y\subset \mathbb{P}^4$ there are 2875 lines | * On a general quintic threefold $Y\subset \mathbb{P}^4$ there are 2875 lines | ||
6번째 줄: | 7번째 줄: | ||
==memo== | ==memo== | ||
* http://mathoverflow.net/questions/160561/the-classical-number-2875-of-lines-on-the-quintic-as-a-dt-invariant/160846#160846 | * http://mathoverflow.net/questions/160561/the-classical-number-2875-of-lines-on-the-quintic-as-a-dt-invariant/160846#160846 | ||
+ | |||
+ | |||
+ | ==related items== | ||
+ | * [[Mirror symmetry]] | ||
2014년 10월 27일 (월) 17:26 판
introduction
- The derived category of coherent sheaves on a general quintic threefold is a central object in mirror symmetry
- 1,1,27,2875, 698005,
- On a general quintic threefold $Y\subset \mathbb{P}^4$ there are 2875 lines
memo
expositions
- Pandharipande, R., and R. P. Thomas. 2011. “13/2 Ways of Counting Curves.” arXiv:1111.1552 [hep-Th], November. http://arxiv.org/abs/1111.1552.
- Zagier, https://docs.google.com/file/d/0B8XXo8Tve1cxUV9VQ3dtZjhMYjA/edit
articles
- Segal, Ed, and Richard P. Thomas. ‘Quintic Threefolds and Fano Elevenfolds’. arXiv:1410.6829 [math], 24 October 2014. http://arxiv.org/abs/1410.6829.
- Shparlinski, Igor E. “On the Density of Integer Points on the Generalised Markoff-Hurwitz and Dwork Hypersurfaces.” arXiv:1404.5866 [math], April 23, 2014. http://arxiv.org/abs/1404.5866.
- Candelas, Philip, Xenia de la Ossa, Bert van Geemen, and Duco van Straten. 2012. “Lines on the Dwork Pencil of Quintic Threefolds.” Advances in Theoretical and Mathematical Physics 16 (6): 1779–1836.
- Musta\ct\va, Anca. 2013. “Degree 1 Curves in the Dwork Pencil and the Mirror Quintic.” Mathematische Annalen 355 (1): 97–130. doi:10.1007/s00208-011-0668-x.