"Virasoro algebra"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 Virasoro algebra로 바꾸었습니다.)
33번째 줄: 33번째 줄:
  
 
*  Lie algebra of vector fields on the unit circle<br><math>f(z)\frac{d}{dz}</math><br><math>L_n=-z^{n+1}\frac{d}{dz}</math><br>
 
*  Lie algebra of vector fields on the unit circle<br><math>f(z)\frac{d}{dz}</math><br><math>L_n=-z^{n+1}\frac{d}{dz}</math><br>
 +
*  they satisfy the following relation<br><math>[L_m,L_n]=(m-n)L_{m+n}</math><br>
 +
*  taking a [[central extension of groups and Lie algebras|central extension of lie algebras]], we get the Virasoro algebra<br><math>L_n,n\in \mathbb{Z}</math><br><math>[c,L_n]=0</math><br><math>[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}</math><br>
  
 
 
 
 
 
<math>L_i</math>
 
 
:<math></math> for <math>i\in\mathbf{Z}</math><br><br> and ''c'' with<br><br> :<math>L_n + L_{-n}</math><br><br> and ''c'' being real elements. Here the central element ''c'' is the '''[[central charge]]'''. The algebra satisfies<br><br> :<math></math><br><br> and<br><br> :<math>[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}.</math>
 
  
 
 
 
 
60번째 줄: 58번째 줄:
 
 
 
 
  
<h5>unitary representations</h5>
+
<h5>unitary irreducible representations</h5>
  
 
*  They are classified by c>1 and c<1 case.<br>
 
*  They are classified by c>1 and c<1 case.<br>
66번째 줄: 64번째 줄:
 
** <math>c\geq 1, h \geq 0</math> positive semi-definite
 
** <math>c\geq 1, h \geq 0</math> positive semi-definite
 
** <math>0<c<1, h> 0</math> with [[Kac determinant formula|Kac determinant]] condition<br>
 
** <math>0<c<1, h> 0</math> with [[Kac determinant formula|Kac determinant]] condition<br>
*** called the discrete series representations
+
*** called the discrete series representations or [[minimal models]]
  
 
 
 
 
72번째 줄: 70번째 줄:
 
 
 
 
  
<h5>character of minimal models</h5>
+
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">affine Lie algebras</h5>
  
[/pages/3003682/attachments/1973999 전체화면_캡처_2009-08-08_오전_60339.jpg]
+
* a highest weight representation V of an affine Kac-Moody algebra gives unitary representation of the Virasoro algebra
 +
* This is because V is a unitary highest weight representation of the AKMA. 
 +
* Read chapter 4 of Kac-Raina on Wedge space
  
* [http://www.springerlink.com/content/an43wt73vpd9c4uw/ Virasoro algebra, Dedekind eta-function and Specialized Macdonald's identities]
+
 
  
 
 
 
 
  
 
+
<h5>character of minimal models</h5>
  
<h5>affine Lie algebras</h5>
+
[/pages/3003682/attachments/1973999 전체화면_캡처_2009-08-08_오전_60339.jpg]
  
* a highest weight representation V of an affine Kac-Moody algebra gives unitary representation of the Virasoro algebra
+
* [http://www.springerlink.com/content/an43wt73vpd9c4uw/ Virasoro algebra, Dedekind eta-function and Specialized Macdonald's identities]
* This is because V is a unitary highest weight representation of the AKMA. 
 
* Read chapter 4 of Kac-Raina on Wedge space
 
  
 
 
 
 
115번째 줄: 113번째 줄:
 
* http://en.wikipedia.org/wiki/Virasoro_algebra
 
* http://en.wikipedia.org/wiki/Virasoro_algebra
 
* http://en.wikipedia.org/wiki/Coset_construction
 
* http://en.wikipedia.org/wiki/Coset_construction
 +
* [http://eom.springer.de/v/v096710.htm Virasoro algebra] by V. Kac
  
 
 
 
 

2010년 5월 12일 (수) 10:44 판

introduction
  • Virasoro algebra could be pre-knowledge for the study of CFT
  • important results on Virasoro algebra are
    • (i)Kac Determinant Formula
    • (ii) discrete series (A. J. Wassermann, Lecture Notes on the Kac-Moody and Virasoro algebras)
    • (iii) GKO construction of discrete series (this is added on 22nd of Oct, 2007)

 

 

unitarity and ghost
  • unitarity means the inner product in the space of states is positive definite (or semi-positive definite)
  • A state with negative norm is called a ghost.
  • If a ghost is found on any level the represetation cannot occur in a unitary theory

 

 

central charge and conformal weight
  • \(c\) is called the central charge
  • \(h\) is sometimes called a conformal dimension or conformal weights

 

 

Virasoro algebra
  • Lie algebra of vector fields on the unit circle
    \(f(z)\frac{d}{dz}\)
    \(L_n=-z^{n+1}\frac{d}{dz}\)
  • they satisfy the following relation
    \([L_m,L_n]=(m-n)L_{m+n}\)
  • taking a central extension of lie algebras, we get the Virasoro algebra
    \(L_n,n\in \mathbb{Z}\)
    \([c,L_n]=0\)
    \([L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\)

 

 

Verma module
  • start with given c and h
  • construct \(M(c,h)\)
    • quotients from the Universal enveloping algebra
    • tensor product from the one dimensional Borel subalgebra representations
  • there exists a unique contravariant hermitian form
  • contravariance means
    • \(L_n\) and \(L_{-n}\) act as adjoints to each other, i.e.
      \(<{L_n}v,w>=<w,L_{-n}w>\)
  • a natural grading given by the \(L_0\)-eigenvalues
  • contains a unique maximal submodule, and its quotient is the unique (up to isomorphism) irreducible representation with highest weight
  • When is \(M(c,h)\) unitary? 
  • to understand the submodules of the Verma module, we refer to Feigin and Fuks.

 

 

unitary irreducible representations
  • They are classified by c>1 and c<1 case.
    • \(c> 1, h > 0\) positive definite
    • \(c\geq 1, h \geq 0\) positive semi-definite
    • \(0<c<1, h> 0\) with Kac determinant condition

 

 

affine Lie algebras
  • a highest weight representation V of an affine Kac-Moody algebra gives unitary representation of the Virasoro algebra
  • This is because V is a unitary highest weight representation of the AKMA. 
  • Read chapter 4 of Kac-Raina on Wedge space

 

 

character of minimal models

[/pages/3003682/attachments/1973999 전체화면_캡처_2009-08-08_오전_60339.jpg]

 

 

No-Ghost theorem

 

 

관련된 항목들

 

 

encyclopedia

 

 

articles