"Virasoro algebra"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
13번째 줄: 13번째 줄:
 
<h5>Virasoro algebra</h5>
 
<h5>Virasoro algebra</h5>
  
*  Lie algebra of vector fields on the unit circle<br><math>f(z)\frac{d}{dz}</math><br><math>L_n=-z^{n+1}\frac{d}{dz}</math><br>
+
*  Lie algebra of vector fields on the unit circle<br><math>f(z)\frac{d}{dz}</math><br>
*  they satisfy the following relation<br><math>[L_m,L_n]=(m-n)L_{m+n}</math><br>
+
*  commutator<br><math>f(z)\frac{d}{dz}</math><br>
 +
 
 +
*  Virasoro generators<br><math>L_n=-z^{n+1}\frac{d}{dz}</math><br>
 +
*  they satisfy the following relation (Witt algebra)<br><math>[L_m,L_n]=(m-n)L_{m+n}</math><br>
 +
* Homological algebra tells that there is 1-dimensional central extension of Witt algebra
 
*  taking a [[central extension of groups and Lie algebras|central extension of lie algebras]], we get the Virasoro algebra<br><math>L_n,n\in \mathbb{Z}</math><br><math>[c,L_n]=0</math><br><math>[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}</math><br>
 
*  taking a [[central extension of groups and Lie algebras|central extension of lie algebras]], we get the Virasoro algebra<br><math>L_n,n\in \mathbb{Z}</math><br><math>[c,L_n]=0</math><br><math>[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}</math><br>
  
23번째 줄: 27번째 줄:
 
<h5>central charge and conformal weight</h5>
 
<h5>central charge and conformal weight</h5>
  
 +
* highest weight representation
 
* <math>c</math> is called the central charge
 
* <math>c</math> is called the central charge
 
* <math>h</math> is sometimes called a conformal dimension or conformal weights
 
* <math>h</math> is sometimes called a conformal dimension or conformal weights
46번째 줄: 51번째 줄:
 
* When is <math>M(c,h)</math> unitary? 
 
* When is <math>M(c,h)</math> unitary? 
 
* to understand the submodules of the Verma module, we refer to Feigin and Fuks.
 
* to understand the submodules of the Verma module, we refer to Feigin and Fuks.
 
 
 
  
 
 
 
 

2010년 9월 24일 (금) 00:20 판

introduction
  • Virasoro algebra could be pre-knowledge for the study of CFT
  • important results on Virasoro algebra are
    • (i)Kac Determinant Formula
    • (ii) discrete series (A. J. Wassermann, Lecture Notes on the Kac-Moody and Virasoro algebras)
    • (iii) GKO construction of discrete series (this is added on 22nd of Oct, 2007)

 

 

Virasoro algebra
  • Lie algebra of vector fields on the unit circle
    \(f(z)\frac{d}{dz}\)
  • commutator
    \(f(z)\frac{d}{dz}\)
  • Virasoro generators
    \(L_n=-z^{n+1}\frac{d}{dz}\)
  • they satisfy the following relation (Witt algebra)
    \([L_m,L_n]=(m-n)L_{m+n}\)
  • Homological algebra tells that there is 1-dimensional central extension of Witt algebra
  • taking a central extension of lie algebras, we get the Virasoro algebra
    \(L_n,n\in \mathbb{Z}\)
    \([c,L_n]=0\)
    \([L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\)

 

 

central charge and conformal weight
  • highest weight representation
  • \(c\) is called the central charge
  • \(h\) is sometimes called a conformal dimension or conformal weights

 

 

Verma module
  • start with given c and h
  • construct \(M(c,h)\)
    • quotients from the Universal enveloping algebra
    • tensor product from the one dimensional Borel subalgebra representations
  • there exists a unique contravariant hermitian form
  • http://mathworld.wolfram.com/HermitianForm.html
  • http://en.wikipedia.org/wiki/Hermitian_adjoint
  • http://en.wikipedia.org/wiki/Hermitian_form#Hermitian_form
  • contravariance means
    • \(L_n\) and \(L_{-n}\) act as adjoints to each other, i.e.
      \(<{L_n}v,w>=<w,L_{-n}w>\)
  • a natural grading given by the \(L_0\)-eigenvalues
  • contains a unique maximal submodule, and its quotient is the unique (up to isomorphism) irreducible representation with highest weight
  • When is \(M(c,h)\) unitary? 
  • to understand the submodules of the Verma module, we refer to Feigin and Fuks.

 

 

unitarity and ghost
  • unitarity means the inner product in the space of states is positive definite (or semi-positive definite)
  • A state with negative norm is called a ghost.
  • If a ghost is found on any level the represetation cannot occur in a unitary theory

 

 

unitary irreducible representations

 

 

affine Lie algebras

 

 

character of minimal models

[/pages/3003682/attachments/1973999 전체화면_캡처_2009-08-08_오전_60339.jpg]

 

 

No-Ghost theorem

 

 

관련된 항목들

 

 

encyclopedia

 

 

articles