"Quadratic forms over p-adic integer rings"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (Pythagoras0 사용자가 Diagonalization over p-adic integers 문서를 Quadratic forms over p-adic integer rings 문서로 옮겼습니다)
imported>Pythagoras0
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* Hilbert symbol
 +
* Hasse invariant
 +
$
 +
\newcommand\Zp{\Z_p}
 +
\newcommand\Qp{\Q_p}
 +
\newcommand\Qpx{\Qp^\times}
 +
\newcommand\GL[2]{\operatorname{GL}_{#1}(#2)}
 +
\newcommand\GLnZ{\GL n\Z}
 +
\newcommand\GLnZp{\GL n{\Zp}}
 +
\newcommand\Znn{\Z_{\ge0}}
 +
\newcommand{\ord}[2]{{\rm ord}_{#1}(#2)}
 +
\newcommand\inv{^{-1}}
 +
$
 +
 +
 +
 +
==Hilbert symbol==
 +
* For $a,b\in\Qpx$ the Hilbert symbol $(a,b)_p$ is $1$ if $aX^2+bY^2=Z^2$ has nontrivial
 +
solutions in $\Qp^3$ and $-1$ if not.
 +
 +
 +
 +
==Hasse invariant==
 +
* For $u\in\GL m\Qp^{\rm sym}$ the Hasse invariant of $u$ is $h_p(u)=\prod_{i\le j}(a_i,a_j)_p$ where
 +
$u$ is $\GL m\Qp$-equivalent to the diagonal matrix having entries $a_1,\cdots,a_m$.
 +
 +
 +
 
==computational resource==
 
==computational resource==
 
* https://drive.google.com/file/d/0B8XXo8Tve1cxTERFcHVSQnpKUFU/view
 
* https://drive.google.com/file/d/0B8XXo8Tve1cxTERFcHVSQnpKUFU/view

2018년 2월 14일 (수) 19:40 판

introduction

  • Hilbert symbol
  • Hasse invariant

$ \newcommand\Zp{\Z_p} \newcommand\Qp{\Q_p} \newcommand\Qpx{\Qp^\times} \newcommand\GL[2]{\operatorname{GL}_{#1}(#2)} \newcommand\GLnZ{\GL n\Z} \newcommand\GLnZp{\GL n{\Zp}} \newcommand\Znn{\Z_{\ge0}} \newcommand{\ord}[2]{{\rm ord}_{#1}(#2)} \newcommand\inv{^{-1}} $


Hilbert symbol

  • For $a,b\in\Qpx$ the Hilbert symbol $(a,b)_p$ is $1$ if $aX^2+bY^2=Z^2$ has nontrivial

solutions in $\Qp^3$ and $-1$ if not.


Hasse invariant

  • For $u\in\GL m\Qp^{\rm sym}$ the Hasse invariant of $u$ is $h_p(u)=\prod_{i\le j}(a_i,a_j)_p$ where

$u$ is $\GL m\Qp$-equivalent to the diagonal matrix having entries $a_1,\cdots,a_m$.


computational resource