"겔폰드-슈나이더 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
+
==이 항목의 스프링노트 원문주소==
  
 
* [[겔폰드-슈나이더 정리]]
 
* [[겔폰드-슈나이더 정리]]
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">겔폰드-슈나이더 정리==
+
==겔폰드-슈나이더 정리==
  
 
(정리) 겔폰드-슈나이더, 1934
 
(정리) 겔폰드-슈나이더, 1934
17번째 줄: 17번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">겔폰드 상수==
+
==겔폰드 상수==
  
 
* <math>e^\pi</math> 를 겔폰드 상수라 함<br>
 
* <math>e^\pi</math> 를 겔폰드 상수라 함<br>
27번째 줄: 27번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">겔폰드-슈나이더 상수==
+
==겔폰드-슈나이더 상수==
  
 
* <math>2^{\sqrt2}</math><br>
 
* <math>2^{\sqrt2}</math><br>
36번째 줄: 36번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">또다른 예==
+
==또다른 예==
  
 
* <math>e^{\pi \sqrt{163}}=(e^{-i\pi})^{\sqrt{-163}}=(-1)^{\sqrt{-163}}</math> 이므로 초월수이다 [[숫자 163]]
 
* <math>e^{\pi \sqrt{163}}=(e^{-i\pi})^{\sqrt{-163}}=(-1)^{\sqrt{-163}}</math> 이므로 초월수이다 [[숫자 163]]
44번째 줄: 44번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사==
+
==역사==
  
 
* 힐버트 7번 문제
 
* 힐버트 7번 문제
56번째 줄: 56번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들==
+
==관련된 항목들==
  
 
 
 
 
62번째 줄: 62번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
+
==수학용어번역==
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
73번째 줄: 73번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/w/index.php?title=%EA%B2%94%ED%8F%B0%EB%93%9C-%EC%8A%88%EB%82%98%EC%9D%B4%EB%8D%94_%EC%A0%95%EB%A6%AC http://ko.wikipedia.org/w/index.php?title=겔폰드-슈나이더_정리]
 
* [http://ko.wikipedia.org/w/index.php?title=%EA%B2%94%ED%8F%B0%EB%93%9C-%EC%8A%88%EB%82%98%EC%9D%B4%EB%8D%94_%EC%A0%95%EB%A6%AC http://ko.wikipedia.org/w/index.php?title=겔폰드-슈나이더_정리]
93번째 줄: 93번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문==
+
==관련논문==
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
100번째 줄: 100번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서==
+
==관련도서 및 추천도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
114번째 줄: 114번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">관련링크와 웹페이지==
+
==관련링크와 웹페이지==
  
 
* [http://www.math.sc.edu/%7Efilaseta/gradcourses/Math785/main785.html Transcendental number theory]<br>
 
* [http://www.math.sc.edu/%7Efilaseta/gradcourses/Math785/main785.html Transcendental number theory]<br>
124번째 줄: 124번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그==
+
==블로그==
  
 
* http://blog.hshin.info/172<br>
 
* http://blog.hshin.info/172<br>
 
* 구글 블로그 검색 [http://blogsearch.google.com/blogsearch?q=%EA%B2%94%ED%8F%B0%EB%93%9C%EC%8A%88%EB%82%98%EC%9D%B4%EB%8D%94 http://blogsearch.google.com/blogsearch?q=겔폰드슈나이더]
 
* 구글 블로그 검색 [http://blogsearch.google.com/blogsearch?q=%EA%B2%94%ED%8F%B0%EB%93%9C%EC%8A%88%EB%82%98%EC%9D%B4%EB%8D%94 http://blogsearch.google.com/blogsearch?q=겔폰드슈나이더]
 
*
 
*

2012년 11월 1일 (목) 13:25 판

이 항목의 스프링노트 원문주소

 

 

겔폰드-슈나이더 정리

(정리) 겔폰드-슈나이더, 1934

\(\alpha \ne 0\),\(\alpha \ne 1\),\(\beta\notin \mathbb{Q}\) 인 복소수 \(\alpha\)와 \(\beta\) 가 대수적수이면, \(\alpha^{\beta} =e^{\beta \log \alpha\) 는 초월수이다.

 

 

겔폰드 상수

  • \(e^\pi\) 를 겔폰드 상수라 함
  • \(e^\pi=(e^{i\pi})^{-i}=(-1)^{i}\)
  • 겔폰드 슈나이더 정리를 적용하면, 초월수임이 증명.

 

 

겔폰드-슈나이더 상수

  • \(2^{\sqrt2}\)
  • 겔폰드 슈나이더 정리를 적용하면, 초월수임이 증명.

 

 

또다른 예

  • \(e^{\pi \sqrt{163}}=(e^{-i\pi})^{\sqrt{-163}}=(-1)^{\sqrt{-163}}\) 이므로 초월수이다 숫자 163

 

 

역사

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련링크와 웹페이지

 

 

블로그