"에어리 (Airy) 함수와 미분방정식"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)  | 
				Pythagoras0 (토론 | 기여)   (→메타데이터:  새 문단)  | 
				||
| 76번째 줄: | 76번째 줄: | ||
[[분류:미분방정식]]  | [[분류:미분방정식]]  | ||
| + | |||
| + | == 메타데이터 ==  | ||
| + | |||
| + | ===위키데이터===  | ||
| + | * ID :  [https://www.wikidata.org/wiki/Q409415 Q409415]  | ||
2020년 12월 28일 (월) 06:29 판
개요
- 에어리 미분방정식\(y'' - xy = 0\)
 - 에어리 함수 \(Ai,Bi\)는 일차독립인 두 해이다
 
\[\mathrm{Ai}(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\tfrac13t^3 + xt\right)\, dt,\] \[\mathrm{Bi}(x) = \frac{1}{\pi} \int_0^\infty \left[\exp\left(-\tfrac13t^3 + xt\right) + \sin\left(\tfrac13t^3 + xt\right)\,\right]dt.,\]
근사공식
- 안장점 근사
 - \(x>>0\) 일 때,\[\mathrm{Ai}(x) \sim \frac{e^{-\frac{2 x^{3/2}}{3}}}{2 \sqrt{\pi }x^{1/4}}\]
 - \(x<<0\) 일 때,\[\mathrm{Ai}(x) \sim \frac{\sin \left(\frac{2 |x|^{3/2}}{3}+\frac{\pi }{4}\right)}{\sqrt{\pi } \sqrt[4]{|x|}}\]
 - Asymptotics of the Airy Function
 
역사
 
 
메모
- Math Overflow http://mathoverflow.net/search?q=
 
 
관련된 항목들
- 점근 급수(asymptotic series)
 
수학용어번역
 
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxbl96STk2T3dpajg/edit
 - http://www.wolframalpha.com/input/?i=Ai%28x%29
 
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
 - http://en.wikipedia.org/wiki/Airy_equation
 - http://en.wikipedia.org/wiki/WKB_approximation
 - The Online Encyclopaedia of Mathematics
 - NIST Digital Library of Mathematical Functions
 - The World of Mathematical Equations
 
 
 
리뷰논문, 에세이, 강의노트
- http://www.ams.org/samplings/feature-column/fcarc-rainbows
 - Duistermaat, J. J. “The Light in the Neighborhood of a Caustic.” In Séminaire Bourbaki Vol. 1976/77 Exposés 489–506, 19–29. Lecture Notes in Mathematics 677. Springer Berlin Heidelberg, 1978. http://link.springer.com/chapter/10.1007/BFb0070750.
 
관련논문
- Clarkson, Peter A. “On Airy Solutions of the Second Painlev’e Equation.” arXiv:1510.08326 [nlin], October 28, 2015. http://arxiv.org/abs/1510.08326.
 - Duistermaat, J. J. “Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities.” Communications on Pure and Applied Mathematics 27 (1974): 207–81.
 - On the Intensity of Light in the Neighborhood of a Caustic, 1838. http://archive.org/details/cbarchive_36815_ontheintensityoflightintheneig1838.
 
메타데이터
위키데이터
- ID : Q409415