"Finite dimensional representations of Sl(2)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
<h5>introduction</h5> | <h5>introduction</h5> | ||
− | + | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>character formula</h5> | ||
+ | |||
+ | * Weyl-Kac formula<br><math>ch(V)={\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) \over e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}</math><br> | ||
− | <math> | + | * for trivial representation, we get denominator identity<br><math>{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho}) = e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}</math><br> |
+ | |||
+ | <h5 style="line-height: 2em; margin: 0px;">Chebyshev polynomial</h5> | ||
* <math>U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)</math> | * <math>U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)</math> | ||
+ | * Define <math>w^{2(2k+3)}=1</math> and <math>z=w+w^{-1}</math> | ||
+ | |||
+ | <math>p_i(z)=\frac{w^{i+1}-w^{-i-1}}{w-w^{-1}}</math> for <math> i=1,\cdots, k</math> | ||
− | + | ||
* <math>p_{0}(z)=1</math> | * <math>p_{0}(z)=1</math> | ||
* <math>p_{1}(z)=z</math> | * <math>p_{1}(z)=z</math> | ||
* <math>p_i(z)^2=1+p_{i-1}(z)p_{i+1}(z)</math> | * <math>p_i(z)^2=1+p_{i-1}(z)p_{i+1}(z)</math> | ||
− | |||
− | |||
− | |||
− | |||
2010년 4월 4일 (일) 18:31 판
introduction
character formula
- Weyl-Kac formula
\(ch(V)={\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) \over e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}\)
- for trivial representation, we get denominator identity
\({\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho}) = e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}\)
Chebyshev polynomial
- \(U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)\)
- Define \(w^{2(2k+3)}=1\) and \(z=w+w^{-1}\)
\(p_i(z)=\frac{w^{i+1}-w^{-i-1}}{w-w^{-1}}\) for \( i=1,\cdots, k\)
- \(p_{0}(z)=1\)
- \(p_{1}(z)=z\)
- \(p_i(z)^2=1+p_{i-1}(z)p_{i+1}(z)\)
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
articles
[[2010년 books and articles|]]
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
experts on the field