"Finite dimensional representations of Sl(2)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction</h5>
  
 
* [[affine sl(2) $A^{(1)} 1$]]
 
* [[affine sl(2) $A^{(1)} 1$]]
38번째 줄: 38번째 줄:
 
 
 
 
  
<h5>Hermite reciprocity</h5>
+
==Hermite reciprocity</h5>
  
 
* '''[GW1998]'''
 
* '''[GW1998]'''
103번째 줄: 103번째 줄:
 
 
 
 
  
<h5>Clebsch-Gordan coefficients</h5>
+
==Clebsch-Gordan coefficients</h5>
  
 
* [[3j symbol (Clebsch-Gordan coefficient)]]
 
* [[3j symbol (Clebsch-Gordan coefficient)]]
111번째 줄: 111번째 줄:
 
 
 
 
  
<h5>Catalan numbers</h5>
+
==Catalan numbers</h5>
  
 
* http://qchu.wordpress.com/2010/03/07/walks-on-graphs-and-tensor-products/
 
* http://qchu.wordpress.com/2010/03/07/walks-on-graphs-and-tensor-products/
124번째 줄: 124번째 줄:
 
 
 
 
  
<h5>history</h5>
+
==history</h5>
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
132번째 줄: 132번째 줄:
 
 
 
 
  
<h5>related items</h5>
+
==related items</h5>
  
 
* [[affine sl(2) $A^{(1)} 1$]]
 
* [[affine sl(2) $A^{(1)} 1$]]
156번째 줄: 156번째 줄:
 
 
 
 
  
<h5>books</h5>
+
==books</h5>
  
 
* '''[GW1998]'''Goodman and Wallach,Representations and invariants of the classical groups
 
* '''[GW1998]'''Goodman and Wallach,Representations and invariants of the classical groups
186번째 줄: 186번째 줄:
 
 
 
 
  
<h5>question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)</h5>
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
195번째 줄: 195번째 줄:
 
 
 
 
  
<h5>blogs</h5>
+
==blogs</h5>
  
 
* 구글 블로그 검색<br>
 
* 구글 블로그 검색<br>
205번째 줄: 205번째 줄:
 
 
 
 
  
<h5>experts on the field</h5>
+
==experts on the field</h5>
  
 
* http://arxiv.org/
 
* http://arxiv.org/
213번째 줄: 213번째 줄:
 
 
 
 
  
<h5>links</h5>
+
==links</h5>
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]

2012년 10월 28일 (일) 15:00 판

==introduction

 

 

specialization
  • Cartan matrix
    \(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\)
  • root system
    \(\Phi=\{\alpha,-\alpha\}\)

 

 

representation theory
  • integrable weights and Weyl vector
    \(\omega=\frac{1}{2}\alpha\)
    \(\rho=\omega\)
  • there is a unique k+1 dimensional irreducible module \(V_k\) with the highest integrable weight \(\lambda=k\omega\)
  • Weyl-Kac formula
    \(\operatorname{ch}L(k\omega)=\frac{e^{(k+1)\omega}-e^{-(k+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{k\omega}+e^{(k-2)\omega}+\cdots+e^{-k\omega}\)

 

 

character formula and Chebyshev polynomial of the 2nd kind
  • \(U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)\)
    U_0[x]=1
    U_1[x]=2 x
    U_2[x]=-1+4 x^2
    U_3[x]=-4 x+8 x^3
  • character evaluated at an element of SU(2) with the eigenvalues e^{i\theta}, e^{-i\theta} is given by the Chebyshev polynomials
    \(U_k(\cos\theta)= \frac{\sin (k+1)\theta}{\sin \theta}\)
  • \(w=e^{i\theta}\),\(z=w+w^{-1}=2\cos\theta\)
    \(p_k(z)=\frac{w^{k+1}-w^{-k-1}}{w-w^{-1}}\)
    \(p_{0}(z)=1\)
    \(p_{1}(z)=z\)
    \(p_{2}(z)=z^2-1\)
    \(p_{3}(z)=z^3-2z\)
    \(p_k(z)^2=1+p_{k-1}(z)p_{k+1}(z)\)

 

 

==Hermite reciprocity

  • [GW1998]
  • dimension of symmetric algebra and exterior algebra of V_k

 

 

symmetric power of sl(2) representations
  • q-binomial type formula (Heine formula,useful techniques in q-series)
    \(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)
  • the character of j-th symmetric power of V_k is
    \(\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)
    where the q-analogue of the natural number is defined as 
    \([n]_{q}=\frac{q^n-q^{-n}}{q-q^{-1}}\)

 

(proof)

Fix a k throughout the argument.

Let \(F_j(q)\) be the character of j-th symmetric power of V_k.

\(F_j(q)=\sum_{m_0,\cdots,m_k}q^{(k-0)m_0+(k-2)m_1+\cdots+(2-k)m_{k-1}+(0-k)m_k}\)

where \(m_0+m_1+\cdots+m_k=j\)

Now consider the generating function

\(F(z,q)=\sum_{j=0}^{\infty}F_j(q)z^j\)

I claim that

\(F(z,q)=\sum_{j=0}^{\infty}F_j(q)z^j=\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}\). 

To prove that see the power series expansion of a factor\[(1-zq^{k-2j})^{-1}=\sum_{m=0}^{\infty}z^mq^{m(k-2j)}\]. Therefore

\(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{m_0,\cdots,m_k}z^{m_0+\cdots+m_k}q^{(k-0)m_0+(k-2)m_1+\cdots+(2-k)m_{k-1}+(0-k)m_k}\)

Now we can easily check

\(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)■

 

 

exterior algebra of sl(2) representations
  • q-binomial type formula (Gauss formula,useful techniques in q-seriesq-analogue of summation formulas)
    \(\prod_{j=0}^{k}(1+zq^{k-2j})}=\sum_{j=0}^{k+1}\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}z^j\)
  • the character of j-th exterior algebra of V_k is
    \(\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}\)

 

(proof)

analogous to the above. ■

 

 

 

==Clebsch-Gordan coefficients

 

 

==Catalan numbers

  1. f[n_] := Integrate[(2 Cos[Pi*x])^n*2 (Sin[Pi*x])^2, {x, 0, 1}]
    Table[Simplify[f[2 k]], {k, 1, 10}]
    Table[CatalanNumber[n], {n, 1, 10}]

 

 

 

==history

 

 

==related items

  • [[affine sl(2) $A^{(1)} 1$]]

 

 

encyclopedia

 

 

==books

 

 

articles

2010년 books and articles

 

 

==question and answers(Math Overflow)

 

 

==blogs

 

 

==experts on the field

 

 

==links