"Degrees and exponents"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
*  eigenvalues of Cartan matrices<br>
+
*  eigenvalues of Cartan matrices
*  eigenvalues of incidence matrices of Dynkin diagram<br>
+
*  eigenvalues of incidence matrices of Dynkin diagram
 
* http://pythagoras0.springnote.com/pages/1938682/attachments/3170605
 
* http://pythagoras0.springnote.com/pages/1938682/attachments/3170605
  
8번째 줄: 8번째 줄:
 
==Cartan matrix==
 
==Cartan matrix==
  
*  h : [[Coxeter number and dual Coxeter number|Coxeter number]]<br>
+
*  h : [[Coxeter number and dual Coxeter number|Coxeter number]]
*  eigenvalue<br><math>4\sin^2(\frac{m_{i}\pi}{2h})</math><br>
+
*  eigenvalue <math>4\sin^2(m_{i}\pi/2h)</math>
* <math>m_{i}</math> is called the exponents<br>
+
* <math>m_{i}</math> is called the exponents
* <math>d_{i}=m_{i}+1</math> is called a degree<br>
+
* <math>d_{i}=m_{i}+1</math> is called a degree
  
  
 
==adjacency matrix==
 
==adjacency matrix==
  
*  h : Coxeter number<br>
+
*  h : Coxeter number
*  eigenvalue <math>2\cos(\pi l_n/h)</math><br>
+
*  eigenvalue <math>2\cos(\pi l_n/h)</math>
  
  
23번째 줄: 23번째 줄:
 
==degree and exponent of simple Lie algebra==
 
==degree and exponent of simple Lie algebra==
  
*  appears in invariant theory<br>
+
*  appears in invariant theory
*  can also be seen as eigenvalues of Cartan matrix or incidence matrix of the Dynkin diagram<br>
+
*  can also be seen as eigenvalues of Cartan matrix or incidence matrix of the Dynkin diagram
*  for incidence matrix, the eigenvalues are given by<br><math>2\cos(\pi l_n/h)</math><br> where h is the Coxeter number and <math>l_i</math>'s are the exponents<br>
+
*  for incidence matrix, the eigenvalues are given by:<math>2\cos(\pi l_n/h)</math> where h is the Coxeter number and <math>l_i</math>'s are the exponents
* example : A4 Cartan matrix has the Coxeter number 5<br><math>\left( \begin{array}{cccc}  2 & -1 & 0 & 0 \\  -1 & 2 & -1 & 0 \\  0 & -1 & 2 & -1 \\  0 & 0 & -1 & 2 \end{array} \right)</math><br> incidence matrix<br><math>\left( \begin{array}{cccc}  0 & 1 & 0 & 0 \\  1 & 0 & 1 & 0 \\  0 & 1 & 0 & 1 \\  0 & 0 & 1 & 0 \end{array} \right)</math><br> eigenvalues of the incidence matrix<br><math>\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}</math><br> you can evalutate the following in mathematica to get the same set<br>
+
===example===
*#  Table[2 Cos[Pi*l/5], {l, 1, 4}]<br> <br>
+
* A4 Cartan matrix has the Coxeter number 5
 
+
:<math>\left( \begin{array}{cccc}  2 & -1 & 0 & 0 \\  -1 & 2 & -1 & 0 \\  0 & -1 & 2 & -1 \\  0 & 0 & -1 & 2 \end{array} \right)</math> * incidence matrix:<math>\left( \begin{array}{cccc}  0 & 1 & 0 & 0 \\  1 & 0 & 1 & 0 \\  0 & 1 & 0 & 1 \\  0 & 0 & 1 & 0 \end{array} \right)</math>  
+
* eigenvalues of the incidence matrix:<math>\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}</math>
 
 
 
 
 
# Table[Simplify[2 Cos[Pi*l/5]], {l, 1, 4}]<br> Table[Simplify[4 Sin[Pi*l/10]^2], {l, 1, 4}]
 
 
 
 
  
 
   
 
   
  
 
==homological algebraic characterization==
 
==homological algebraic characterization==
 
+
* For a semisimple. Lie algebra L
For a s.s. Lie algebra L
+
* $H^{\bullet}(L)$ is a free super-commutative algebra with homogeneous generator in degrees $2m_1+1,\cdots,2m_l+1$
 
 
(a)H'(L) is a free super- commutative algebra with homogeneous generator in degrees 2m_1+1,\cdots,2m_l+1
 
  
 
   
 
   
68번째 줄: 60번째 줄:
  
 
==encyclopedia==
 
==encyclopedia==
 
* http://ko.wikipedia.org/wiki/
 
 
* http://en.wikipedia.org/wiki/Coxeter_number
 
* http://en.wikipedia.org/wiki/Coxeter_number
* http://en.wikipedia.org/wiki/
 
  
  
 
 
 
 
==books==
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
==articles==
 
 
 
 
* [[2010년 books and articles|논문정리]]
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html][http://www.ams.org/mathscinet ]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:Lie theory]]
 
[[분류:Lie theory]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math]]
 
[[분류:math]]

2013년 7월 5일 (금) 04:51 판

introduction


Cartan matrix

  • h : Coxeter number
  • eigenvalue \(4\sin^2(m_{i}\pi/2h)\)
  • \(m_{i}\) is called the exponents
  • \(d_{i}=m_{i}+1\) is called a degree


adjacency matrix

  • h : Coxeter number
  • eigenvalue \(2\cos(\pi l_n/h)\)


degree and exponent of simple Lie algebra

  • appears in invariant theory
  • can also be seen as eigenvalues of Cartan matrix or incidence matrix of the Dynkin diagram
  • for incidence matrix, the eigenvalues are given by\[2\cos(\pi l_n/h)\] where h is the Coxeter number and \(l_i\)'s are the exponents

example

  • A4 Cartan matrix has the Coxeter number 5

\[\left( \begin{array}{cccc} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{array} \right)\] * incidence matrix\[\left( \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right)\]

  • eigenvalues of the incidence matrix\[\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}\]


homological algebraic characterization

  • For a semisimple. Lie algebra L
  • $H^{\bullet}(L)$ is a free super-commutative algebra with homogeneous generator in degrees $2m_1+1,\cdots,2m_l+1$





history



related items

encyclopedia