"Degrees and exponents"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (Pythagoras0 사용자가 Degrees and exponent 문서를 Degrees and exponents 문서로 옮겼습니다.)
imported>Pythagoras0
3번째 줄: 3번째 줄:
 
*  eigenvalues of Cartan matrices
 
*  eigenvalues of Cartan matrices
 
*  eigenvalues of incidence matrices of Dynkin diagram
 
*  eigenvalues of incidence matrices of Dynkin diagram
* http://pythagoras0.springnote.com/pages/1938682/attachments/3170605
+
* {{수학노트|url=유한반사군과_콕세터군(finite_reflection_groups_and_Coxeter_groups)}}
  
  
28번째 줄: 28번째 줄:
 
===example===
 
===example===
 
* A4 Cartan matrix has the Coxeter number 5
 
* A4 Cartan matrix has the Coxeter number 5
:<math>\left( \begin{array}{cccc}  2 & -1 & 0 & 0 \\  -1 & 2 & -1 & 0 \\  0 & -1 & 2 & -1 \\  0 & 0 & -1 & 2 \end{array} \right)</math> * incidence matrix:<math>\left( \begin{array}{cccc}  0 & 1 & 0 & 0 \\  1 & 0 & 1 & 0 \\  0 & 1 & 0 & 1 \\  0 & 0 & 1 & 0 \end{array} \right)</math>  
+
:<math>\left( \begin{array}{cccc}  2 & -1 & 0 & 0 \\  -1 & 2 & -1 & 0 \\  0 & -1 & 2 & -1 \\  0 & 0 & -1 & 2 \end{array} \right)</math>  
 +
* incidence matrix:<math>\left( \begin{array}{cccc}  0 & 1 & 0 & 0 \\  1 & 0 & 1 & 0 \\  0 & 1 & 0 & 1 \\  0 & 0 & 1 & 0 \end{array} \right)</math>  
 
* eigenvalues of the incidence matrix:<math>\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}</math>
 
* eigenvalues of the incidence matrix:<math>\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}</math>
  
37번째 줄: 38번째 줄:
 
* $H^{\bullet}(L)$ is a free super-commutative algebra with homogeneous generator in degrees $2m_1+1,\cdots,2m_l+1$
 
* $H^{\bullet}(L)$ is a free super-commutative algebra with homogeneous generator in degrees $2m_1+1,\cdots,2m_l+1$
  
 
 
 
 
 
  
 
   
 
   
54번째 줄: 50번째 줄:
  
 
==related items==
 
==related items==
 
+
* [[Coxeter groups and reflection groups]]
 
  
 
   
 
   

2013년 7월 5일 (금) 05:28 판

introduction

  • eigenvalues of Cartan matrices
  • eigenvalues of incidence matrices of Dynkin diagram
  • 틀:수학노트


Cartan matrix

  • h : Coxeter number
  • eigenvalue \(4\sin^2(m_{i}\pi/2h)\)
  • \(m_{i}\) is called the exponents
  • \(d_{i}=m_{i}+1\) is called a degree


adjacency matrix

  • h : Coxeter number
  • eigenvalue \(2\cos(\pi l_n/h)\)


degree and exponent of simple Lie algebra

  • appears in invariant theory
  • can also be seen as eigenvalues of Cartan matrix or incidence matrix of the Dynkin diagram
  • for incidence matrix, the eigenvalues are given by\[2\cos(\pi l_n/h)\] where h is the Coxeter number and \(l_i\)'s are the exponents

example

  • A4 Cartan matrix has the Coxeter number 5

\[\left( \begin{array}{cccc} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{array} \right)\]

  • incidence matrix\[\left( \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right)\]
  • eigenvalues of the incidence matrix\[\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}\]


homological algebraic characterization

  • For a semisimple. Lie algebra L
  • $H^{\bullet}(L)$ is a free super-commutative algebra with homogeneous generator in degrees $2m_1+1,\cdots,2m_l+1$



history



related items


encyclopedia