"Degrees and exponents"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
46번째 줄: | 46번째 줄: | ||
− | |||
==related items== | ==related items== | ||
* [[Coxeter groups and reflection groups]] | * [[Coxeter groups and reflection groups]] | ||
+ | * [[Macdonald constant term conjecture]] | ||
+ | |||
+ | |||
+ | ==computational resource== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxcjRTSkZXbWxwOFE/edit | ||
− | |||
==encyclopedia== | ==encyclopedia== | ||
* http://en.wikipedia.org/wiki/Coxeter_number | * http://en.wikipedia.org/wiki/Coxeter_number | ||
+ | |||
+ | ==articles== | ||
+ | * Macdonald, I. G. 1972. “The Poincaré Series of a Coxeter Group.” Mathematische Annalen 199 (3) (September 1): 161–174. doi:[http://dx.doi.org/10.1007/BF01431421 10.1007/BF01431421] | ||
[[분류:개인노트]] | [[분류:개인노트]] |
2013년 7월 5일 (금) 06:14 판
introduction
- eigenvalues of Cartan matrices
- eigenvalues of incidence matrices of Dynkin diagram
- 틀:수학노트
Cartan matrix
- h : Coxeter number
- eigenvalue \(4\sin^2(m_{i}\pi/2h)\)
- \(m_{i}\) is called the exponents
- \(d_{i}=m_{i}+1\) is called a degree
adjacency matrix
- h : Coxeter number
- eigenvalue \(2\cos(\pi l_n/h)\)
degree and exponent of simple Lie algebra
- appears in invariant theory
- can also be seen as eigenvalues of Cartan matrix or incidence matrix of the Dynkin diagram
- for incidence matrix, the eigenvalues are given by\[2\cos(\pi l_n/h)\] where h is the Coxeter number and \(l_i\)'s are the exponents
example
- A4 Cartan matrix has the Coxeter number 5
\[\left( \begin{array}{cccc} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{array} \right)\]
- incidence matrix\[\left( \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right)\]
- eigenvalues of the incidence matrix\[\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}\]
homological algebraic characterization
- For a semisimple. Lie algebra L
- $H^{\bullet}(L)$ is a free super-commutative algebra with homogeneous generator in degrees $2m_1+1,\cdots,2m_l+1$
history
computational resource
encyclopedia
articles
- Macdonald, I. G. 1972. “The Poincaré Series of a Coxeter Group.” Mathematische Annalen 199 (3) (September 1): 161–174. doi:10.1007/BF01431421