"Degrees and exponents"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* appears in invariant theory
+
* {{수학노트|url=콕세터_군의_차수와_지수_(degrees_and_exponents)}}
* eigenvalues of Coxeter element
 
* eigenvalues of Cartan matrices
 
* eigenvalues of adjacency matrices of Dynkin diagram
 
* {{수학노트|url=유한반사군과_콕세터군(finite_reflection_groups_and_Coxeter_groups)}}
 
  
  
==exponent==
 
* An eigenvalue of a Coxeter element is always of the form $\zeta^{m_i}$ for some integer $m_i$ where $\zeta$ is a primitive $h$-th root of unity. We call the integers $m_i$ such that $1\leq m_i\leq h-1$ the exponents.
 
* if we denote the exponents by $m_i$, $1\le m_i \le h$, then $m_i+m_{r-i+1}=h$ where $r$ is the rank
 
* eigenvalue of the Cartan matrix <math>4\sin^2(m_{i}\pi/2h)</math>
 
* eigenvalue of the adjacency matrix <math>2\cos(\pi m_i/h)</math>
 
 
 
===example===
 
The characteristic polynomial of a Coxeter element  for $E_8$ acting on $\mathbb{R}^8$ is given by
 
$$
 
x^8+x^7-x^5-x^4-x^3+x+1
 
$$
 
Actually, this is the 30-th cyclotomic polynomial $\Phi_{30}(x)$ where
 
$$
 
\Phi_n(x) =\prod_{1\le k\le n,\gcd(k,n)=1}\left(x-e^{2i\pi\frac{k}{n}}\right).
 
$$
 
 
Its roots are $\left\{\zeta ,\zeta ^7,\zeta ^{11},\zeta ^{13},\zeta ^{17},\zeta ^{19},\zeta ^{23},\zeta ^{29}\right\}$ where $\zeta$ is a primitive 30-th root of unity.
 
 
===property===
 
 
;thm (Kostant, 1959)
 
Let $m_1,\cdots,m_n$ be the exponents and $k_1,\cdots,k_n$ be the degrees arranged in an increasing order. Then
 
$$
 
m_i=k_i-1.
 
$$
 
Thus
 
$$
 
\sum_{}m_i=\sum_{}(k_i-1)=\frac{nh}{2}=|\Phi^{+}|
 
$$
 
* conjectured by Coxeter
 
 
 
 
===example===
 
* A4 Cartan matrix has the Coxeter number 5
 
:<math>\left( \begin{array}{cccc}  2 & -1 & 0 & 0 \\  -1 & 2 & -1 & 0 \\  0 & -1 & 2 & -1 \\  0 & 0 & -1 & 2 \end{array} \right)</math>
 
* adjacency matrix:<math>\left( \begin{array}{cccc}  0 & 1 & 0 & 0 \\  1 & 0 & 1 & 0 \\  0 & 1 & 0 & 1 \\  0 & 0 & 1 & 0 \end{array} \right)</math>
 
* eigenvalues of the adjacency matrix:<math>\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}</math>
 
 
 
 
==homological algebraic characterization==
 
* For a semisimple. Lie algebra L
 
* $H^{\bullet}(L)$ is a free super-commutative algebra with homogeneous generator in degrees $2m_1+1,\cdots,2m_l+1$
 
 
 
==memo==
 
* http://mathoverflow.net/questions/143548/uniform-proof-that-a-finite-reflection-group-is-determined-by-its-degrees
 
 
 
 
==history==
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
  
 
==related items==
 
==related items==
73번째 줄: 11번째 줄:
  
  
 
==computational resource==
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxcjRTSkZXbWxwOFE/edit
 
 
 
==encyclopedia==
 
* http://en.wikipedia.org/wiki/Coxeter_number
 
 
 
==articles==
 
* Burns, John M., and Ruedi Suter. 2012. “Power Sums of Coxeter Exponents.” Advances in Mathematics 231 (3-4): 1291–1307. doi:10.1016/j.aim.2012.06.020.
 
* Kostant, Bertram. “The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group.” American Journal of Mathematics 81 (1959): 973–1032.
 
* Coleman, A. J. “The Betti Numbers of the Simple Lie Groups.” Canadian Journal of Mathematics. Journal Canadien de Mathématiques 10 (1958): 349–56.
 
  
 
[[분류:개인노트]]
 
[[분류:개인노트]]

2014년 7월 3일 (목) 10:46 판