"Special relativity"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
19번째 줄: | 19번째 줄: | ||
<h5 style="line-height: 2em; margin: 0px;">Vacuum field equation and gravitational field equation</h5> | <h5 style="line-height: 2em; margin: 0px;">Vacuum field equation and gravitational field equation</h5> | ||
− | * gravitational | + | * gravitational potentail satisfies the following equation<br><math>\nabla^2 \Phi = - 4 \pi G \rho</math><br> |
70번째 줄: | 70번째 줄: | ||
* [http://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation http://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation]<br> | * [http://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation http://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation]<br> | ||
+ | * http://en.wikipedia.org/wiki/Einstein_field_equations<br> | ||
+ | * http://en.wikipedia.org/wiki/Solutions_of_the_Einstein_field_equations<br> | ||
* http://en.wikipedia.org/wiki/Lorentz_covariant<br> | * http://en.wikipedia.org/wiki/Lorentz_covariant<br> | ||
− | * [http://en.wikipedia.org/wiki/Four-vector ]http://en.wikipedia.org/wiki/Four-vector | + | * <br>[http://en.wikipedia.org/wiki/Four-vector ]http://en.wikipedia.org/wiki/Four-vector<br> |
− | |||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
* http://www.scholarpedia.org/ | * http://www.scholarpedia.org/ |
2010년 4월 12일 (월) 07:25 판
four-vector
- can be transformed by Lorentz transoformation
review of Maxwell's equation
Vacuum field equation and gravitational field equation
- gravitational potentail satisfies the following equation
\(\nabla^2 \Phi = - 4 \pi G \rho\)
energy-momentum tensor
- describe the densities and flows of energy and momentum
relativistic Vacuum field equation
relativistic matter field equation
history
encyclopedia
- http://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation
- http://en.wikipedia.org/wiki/Einstein_field_equations
- http://en.wikipedia.org/wiki/Solutions_of_the_Einstein_field_equations
- http://en.wikipedia.org/wiki/Lorentz_covariant
-
[1]http://en.wikipedia.org/wiki/Four-vector - http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- http://gigapedia.com/items/45025/relativity-demystified---a-self-teaching-guide--2005-12
- 2010년 books and articles
- http://gigapedia.info/1/relativity
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html[2]
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/
question and answers(Math Overflow)
blogs and webpage
- Introduction to Differential Geometry and General Relativity
- Lecture Notes by Stefan Waner
- Lecture Notes by Stefan Waner