"슬레이터 3"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
26번째 줄: | 26번째 줄: | ||
* [[q-가우스 합]] 에서 얻어진 다음 결과를 이용<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>, <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br><math>\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}</math><br> | * [[q-가우스 합]] 에서 얻어진 다음 결과를 이용<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>, <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br><math>\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}</math><br> | ||
* 다음의 특수한 경우<br><math>x=q^2, y\to\infty, z\to\infty</math>.<br> | * 다음의 특수한 경우<br><math>x=q^2, y\to\infty, z\to\infty</math>.<br> | ||
− | * | + | * 얻어진 켤레 베일리 쌍<br><math>\delta_n=q^{n^2+n}</math><br><math>\gamma_n=\frac{(1-q)}{(q)_{\infty}}q^{n^2-n}</math><br> |
36번째 줄: | 36번째 줄: | ||
* 다음을 이용 '''[Slater51] '''(4.2)<br> | * 다음을 이용 '''[Slater51] '''(4.2)<br> | ||
* <math>\sum_{r=-[n/2]}^{r=[n/2]}\frac{(1-aq^{4r})(q^{-n})_{2r}a^{2r}q^{2nr+r}(d)_{q^2,r}(e)_{q^2,r}}{(1-a)(aq^{n+1})_{2r}d^re^r(aq^2/d)_{q^2,r}(aq^2/e)_{q^2,r}}=\frac{(q^2/a,aq/d,aq/e,aq^2/de;q^2)_{\infty}}{(q,q^2/d,q^2/e,a^2q/de;q^2)_{\infty}}\frac{(q)_{n}(aq)_{n}(a^2/de)_{q^2,n}}{(aq)_{q^2,n}(aq/d)_{n}(aq/e)_{n}}</math> | * <math>\sum_{r=-[n/2]}^{r=[n/2]}\frac{(1-aq^{4r})(q^{-n})_{2r}a^{2r}q^{2nr+r}(d)_{q^2,r}(e)_{q^2,r}}{(1-a)(aq^{n+1})_{2r}d^re^r(aq^2/d)_{q^2,r}(aq^2/e)_{q^2,r}}=\frac{(q^2/a,aq/d,aq/e,aq^2/de;q^2)_{\infty}}{(q,q^2/d,q^2/e,a^2q/de;q^2)_{\infty}}\frac{(q)_{n}(aq)_{n}(a^2/de)_{q^2,n}}{(aq)_{q^2,n}(aq/d)_{n}(aq/e)_{n}}</math> | ||
− | * 다음의 특수한 경우<br><math>a=q,d\to | + | * 다음의 특수한 경우<br><math>a=q,d\to 0,e\to 0 </math><br> |
* 얻어진 베일리 쌍<br><math>\alpha_{2r}=2</math>, <math>\alpha_{2r+1}=-2</math><br><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{(-1)^n}{(q^2;q^2)_{n}}</math><br> | * 얻어진 베일리 쌍<br><math>\alpha_{2r}=2</math>, <math>\alpha_{2r+1}=-2</math><br><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{(-1)^n}{(q^2;q^2)_{n}}</math><br> | ||
47번째 줄: | 47번째 줄: | ||
* 항등식<br><math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math><br> | * 항등식<br><math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math><br> | ||
− | * [[베일리 쌍(Bailey pair)과 베일리 보조정리]]<br><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><br><math>\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{ | + | * [[베일리 쌍(Bailey pair)과 베일리 보조정리]]<br><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><br><math>\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}=\frac{(-1)^nq^{n^2+n}}{(q^2;q^2)_{n}}</math><br><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{\frac{3n^2+n}{2}}-q^{\frac{3n^2+5n+2}{2}})=(-q)_{\infty}</math><br> |
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> | ||
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= |
2011년 11월 15일 (화) 05:25 판
이 항목의 수학노트 원문주소
개요
항등식의 분류
켤레 베일리 쌍의 유도
- q-가우스 합 에서 얻어진 다음 결과를 이용
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
\(\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}\) - 다음의 특수한 경우
\(x=q^2, y\to\infty, z\to\infty\). - 얻어진 켤레 베일리 쌍
\(\delta_n=q^{n^2+n}\)
\(\gamma_n=\frac{(1-q)}{(q)_{\infty}}q^{n^2-n}\)
베일리 쌍의 유도
- 다음을 이용 [Slater51] (4.2)
- \(\sum_{r=-[n/2]}^{r=[n/2]}\frac{(1-aq^{4r})(q^{-n})_{2r}a^{2r}q^{2nr+r}(d)_{q^2,r}(e)_{q^2,r}}{(1-a)(aq^{n+1})_{2r}d^re^r(aq^2/d)_{q^2,r}(aq^2/e)_{q^2,r}}=\frac{(q^2/a,aq/d,aq/e,aq^2/de;q^2)_{\infty}}{(q,q^2/d,q^2/e,a^2q/de;q^2)_{\infty}}\frac{(q)_{n}(aq)_{n}(a^2/de)_{q^2,n}}{(aq)_{q^2,n}(aq/d)_{n}(aq/e)_{n}}\)
- 다음의 특수한 경우
\(a=q,d\to 0,e\to 0 \) - 얻어진 베일리 쌍
\(\alpha_{2r}=2\), \(\alpha_{2r+1}=-2\)
\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{(-1)^n}{(q^2;q^2)_{n}}\)
q-series 항등식
- 항등식
\(\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\)
- 베일리 쌍(Bailey pair)과 베일리 보조정리
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)
\(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}=\frac{(-1)^nq^{n^2+n}}{(q^2;q^2)_{n}}\)
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{\frac{3n^2+n}{2}}-q^{\frac{3n^2+5n+2}{2}})=(-q)_{\infty}\)