"Spin system and Pauli exclusion principle"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
10번째 줄: | 10번째 줄: | ||
<h5>classical angular momentum</h5> | <h5>classical angular momentum</h5> | ||
+ | |||
+ | |||
+ | |||
+ | <h5>고전역학의 각운동량</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * <math>\mathbf{L}=\mathbf{r}\times \mathbf{p}</math> | ||
+ | |||
+ | |||
+ | |||
+ | * A classical electron moving around a nucleus in a circular orbit<br> | ||
+ | ** orbital angular momentum, <math>L=m_evr</math> | ||
+ | ** magnetic dipole moment, <math>\mu= -evr/2</math> | ||
+ | ** where e, m_e, v, and r are the electron´s charge, mass, velocity, and radius, respectively. | ||
+ | * A classical electron of homogeneous mass and charge density rotating about a symmetry axis<br> | ||
+ | ** angular momentum, <math>L=(3/5)m_eR^2\Omega</math> | ||
+ | ** magnetic dipole moment, <math>\mu= -(3/10)eR^2\Omega</math>, where R and \Omega are the electron´s classical radius and rotating frequency | ||
+ | * gyromagnetic ratio <math>\gamma = \mu/L=-e/2m_e</math><br>[/pages/7141159/attachments/4562863 I15-62-g20.jpg]<br> | ||
+ | * pictures from [http://universe-review.ca/R15-12-QFT.htm#g2 Gyromagnetic Ratio and Anomalous Magnetic Moment] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
25번째 줄: | 55번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
63번째 줄: | 88번째 줄: | ||
* [[Dirac equation]]<br> | * [[Dirac equation]]<br> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2012년 6월 5일 (화) 05:24 판
introduction
- the simplest example of quantum mechanical system
- quantization of the angular momentum
- measures as being some multiple of Planck's constant divided by 2pi
classical angular momentum
고전역학의 각운동량
- \(\mathbf{L}=\mathbf{r}\times \mathbf{p}\)
- A classical electron moving around a nucleus in a circular orbit
- orbital angular momentum, \(L=m_evr\)
- magnetic dipole moment, \(\mu= -evr/2\)
- where e, m_e, v, and r are the electron´s charge, mass, velocity, and radius, respectively.
- A classical electron of homogeneous mass and charge density rotating about a symmetry axis
- angular momentum, \(L=(3/5)m_eR^2\Omega\)
- magnetic dipole moment, \(\mu= -(3/10)eR^2\Omega\), where R and \Omega are the electron´s classical radius and rotating frequency
- gyromagnetic ratio \(\gamma = \mu/L=-e/2m_e\)
[/pages/7141159/attachments/4562863 I15-62-g20.jpg] - pictures from Gyromagnetic Ratio and Anomalous Magnetic Moment
representation theory
- concept from the representation of \(SU(2)\)
- half of highest weight is called the spin of the module
- Casimir operator can also detect this number.
- Casimir operator can also detect this number.
- spin \(1/2\) is the most important case since they are the matter particles
- this is why we have half-integral spin although those representation are integral highest weight representations.
sl(2)
- commutator
\([E,F]=H\)
\([H,E]=2E\)
\([H,F]=-2F\)
spin particle statstics
- Bosons
- photon
- vector boson
- Gluon
- follows Bose-Einstein statistics
- force-transmitting particles
- Fermions = spin- \(1/2\) particles
- quarks and leptons
- follows Fermi-Dirac statistics
- matter particles
- quarks and leptons