"Quantized coordinate ring"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (Pythagoras0 사용자가 Coordinate ring of maximal unipotent subgroup 문서를 Quantized coordinate ring 문서로 옮겼습니다.)
imported>Pythagoras0
2번째 줄: 2번째 줄:
 
* [[Monoidal categorifications of cluster algebras]]
 
* [[Monoidal categorifications of cluster algebras]]
 
* $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$
 
* $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$
* Ringle, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$-modules
+
* Ringel, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$-modules
 
* Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules
 
* Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules
 
* Geiss-Leclerc-S  : Dualizing Lusztig's construction, get a cluster character
 
* Geiss-Leclerc-S  : Dualizing Lusztig's construction, get a cluster character

2014년 8월 8일 (금) 14:48 판

introduction

  • Monoidal categorifications of cluster algebras
  • $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$
  • Ringel, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$-modules
  • Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules
  • Geiss-Leclerc-S : Dualizing Lusztig's construction, get a cluster character