"Quantized coordinate ring"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
36번째 줄: | 36번째 줄: | ||
==articles== | ==articles== | ||
* | * | ||
+ | |||
+ | |||
+ | ==books== | ||
+ | * Korogodski, Leonid I., and Yan S. Soibelman. Algebras of Functions on Quantum Groups. American Mathematical Soc., 1998. |
2014년 8월 8일 (금) 20:40 판
introduction
- $\mathfrak{g}$ : simple Lie algebra over $\mathbb{C}$
- $G$ : connected, simply-connected simple algebraic group with Lie algebra $\mathfrak{g}$
dual of quantized enveloping algebras
QEA
- $q\in \mathbb{C}^{\times}$ not a root of 1
- $U_q:=U_q(\mathfrak{g})=\langle k_i^{\pm},e_i,f_i :i\in I \rangle$ : quantum enveloping algebra
quantized coordinate algebra
- $U_q^{*}=\operatorname{Hom}_{\mathbb{Q}(q)}(U_q,\mathbb{Q}(q))$
- $A_q(\mathfrak{g}):=\{\varphi \in U_q^{*} | \dim U_q \varphi, \dim \varphi U_q <\infty \}$
- also denoted by $\mathbb{C}_q[G]$
- We call $A_q(\mathfrak{g})$ the quantized coordinate ring
comodules and modules
- $\mathbb{C}_q[G]$-comodules = locally finite $U_q(\mathfrak{g})$-modules of type 1
- thm (Soibelman)
cluster theory
- Monoidal categorifications of cluster algebras
- $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$
- Ringel, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$-modules
- Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules
- Geiss-Leclerc-S : Dualizing Lusztig's construction, get a cluster character
articles
books
- Korogodski, Leonid I., and Yan S. Soibelman. Algebras of Functions on Quantum Groups. American Mathematical Soc., 1998.