"Affine sl(2)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
7번째 줄: | 7번째 줄: | ||
<h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">construction</h5> | <h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">construction</h5> | ||
− | |||
* this is borrowed from [[affine Kac-Moody algebra]] entry | * this is borrowed from [[affine Kac-Moody algebra]] entry | ||
* Let <math>\mathfrak{g}</math> be a semisimple Lie algebra with root system <math>\Phi</math> and the invariant form <math><\cdot,\cdot></math> | * Let <math>\mathfrak{g}</math> be a semisimple Lie algebra with root system <math>\Phi</math> and the invariant form <math><\cdot,\cdot></math> |
2010년 3월 22일 (월) 13:28 판
Gannon 190p, 193p, 196p,371p
construction
- this is borrowed from affine Kac-Moody algebra entry
- Let \(\mathfrak{g}\) be a semisimple Lie algebra with root system \(\Phi\) and the invariant form \(<\cdot,\cdot>\)
- say \(\mathfrak{g}=A_1\), \(\Phi=\{\alpha\}\)
- Cartan matrix
\(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\) - Find the highest root
- \(\alpha\)
- \(\alpha\)
- Add another simple root \(\alpha_0\) to the root system \(\Phi\)
- \(\alpha_0=-\alpha\)
- \(\alpha_0=-\alpha\)
- Construct a new Cartan matrix
\(A' = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}\) - Note that this matrix has rank 1 since \((1,1)\) belongs to the null space
- construct a Lie algebra from the new Cartan matrix \(A'\)
- Add a outer derivation\(d=-l_0\) to compensate the degeneracy of the Cartan matrix
\(\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}\)
basic quantities
- a_i=1
- c_i=a_i^{\vee}=1
- a_{ij}
- dual Coxeter number
- Weyl vector
fixing a Cartan subalgebra and its dual
- basis of the Cartan subalgebra H
\(h_0=C-h_1\)
\(h_1\)
\(d=-l_0\) - dual basis for H
\(\omega_0,\omega_1,\delta\)
killing form
- invariant symmetric non-deg bilinear forms
\(<h_i,h_j>=A_{ij}\)
\(<h_0,d>=1\)
\(<h_1,d>=0\)
\(<d,d>=0\)
level k highest weight representation
- integrable highest weight
\(\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1\), \(\lambda_{i}\in\mathbb{N}\) - level
\(k=\lambda_{0}+\lambda_{1}\) - therefore \(\lambda_{0}\in\{0,1,\cdots,k\}\)