"Affine sl(2)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
| 13번째 줄: | 13번째 줄: | ||
* say <math>\mathfrak{g}=A_1</math>,  <math>\Phi=\{\alpha,-\alpha\}</math>  | * say <math>\mathfrak{g}=A_1</math>,  <math>\Phi=\{\alpha,-\alpha\}</math>  | ||
*  Cartan matrix<br><math>\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}</math><br>  | *  Cartan matrix<br><math>\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}</math><br>  | ||
| − | *  Find the highest root   | + | *   <br> Find the highest root  <math>\alpha</math><br>   | 
| − | + | *   <br> Add another simple root <math>\alpha_0</math> to the root system <math>\Phi</math> which is <math>\alpha_0=-\alpha</math>, but we regard this as<br>   | |
| − | *  Add another simple root <math>\alpha_0</math> to the root system <math>\Phi</math>  | ||
| − | |||
*  Construct a new Cartan matrix<br><math>A' = \begin{pmatrix} 2 & -2  \\ -2 & 2  \end{pmatrix}</math><br>  | *  Construct a new Cartan matrix<br><math>A' = \begin{pmatrix} 2 & -2  \\ -2 & 2  \end{pmatrix}</math><br>  | ||
*  Note that this matrix has rank 1 since <math>(1,1)</math> belongs to the null space<br>  | *  Note that this matrix has rank 1 since <math>(1,1)</math> belongs to the null space<br>  | ||
| 31번째 줄: | 29번째 줄: | ||
*  c_i=a_i^{\vee}=1<br>  | *  c_i=a_i^{\vee}=1<br>  | ||
*  a_{ij}<br>  | *  a_{ij}<br>  | ||
| − | *  coxeter number  | + | *  coxeter number 2<br>  | 
| − | + | *  dual Coxeter number 2<br>  | |
| − | *  dual Coxeter number  | ||
| − | |||
*  Weyl vector<br>  | *  Weyl vector<br>  | ||
| 80번째 줄: | 76번째 줄: | ||
<h5>denominator formula</h5>  | <h5>denominator formula</h5>  | ||
| − | * [[  | + | * [[Weyl-Kac character formula]]<br><math>{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho}) = e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}</math><br>  | 
| + | |||
| + | |||
| 91번째 줄: | 89번째 줄: | ||
*  level<br><math>k=\lambda_{0}+\lambda_{1}\in\mathbb{N}</math><br>  | *  level<br><math>k=\lambda_{0}+\lambda_{1}\in\mathbb{N}</math><br>  | ||
* therefore <math>\lambda_{0}\in\{0,1,\cdots,k\}</math>  | * therefore <math>\lambda_{0}\in\{0,1,\cdots,k\}</math>  | ||
| − | |||
| − | |||
| − | |||
| − | |||
2010년 9월 26일 (일) 00:26 판
Gannon 190p, 193p, 196p,371p
\($A^{(1)}_1$\)
construction
- this is borrowed from affine Kac-Moody algebra entry
 - Let \(\mathfrak{g}\) be a semisimple Lie algebra with root system \(\Phi\) and the invariant form \(<\cdot,\cdot>\)
 - say \(\mathfrak{g}=A_1\), \(\Phi=\{\alpha,-\alpha\}\)
 - Cartan matrix
\(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\) -  
Find the highest root \(\alpha\)
 -  
Add another simple root \(\alpha_0\) to the root system \(\Phi\) which is \(\alpha_0=-\alpha\), but we regard this as
 - Construct a new Cartan matrix
\(A' = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}\) - Note that this matrix has rank 1 since \((1,1)\) belongs to the null space
 - construct a Lie algebra from the new Cartan matrix \(A'\)
 - Add a outer derivation\(d=-l_0\) to compensate the degeneracy of the Cartan matrix
\(\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}\) 
basic quantities
- a_i=1
 - c_i=a_i^{\vee}=1
 - a_{ij}
 - coxeter number 2
 - dual Coxeter number 2
 - Weyl vector
 
root systems
- \(\Phi=\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\cup \{n\delta|n\in\mathbb{Z},n\neq 0\}\)
 - real roots
- \(\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\)
 
 - \(\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\)
 - imaginary roots   
- \(\{n\delta|n\in\mathbb{Z},n\neq 0\}\)
 - \(\delta=\alpha_0+\alpha_1\)
 
 - simple roots
- \(\alpha_0,\alpha_1\)
 
 - \(\alpha_0,\alpha_1\)
 - positive roots
- \(\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup  (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\)
 
 - \(\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup  (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\)
 
fixing a Cartan subalgebra and its dual
- basis of the Cartan subalgebra H
\(h_0=C-h_1\)
\(h_1\)
\(d=-l_0\) - dual basis for H
\(\omega_0,\omega_1,\delta\) - Weyl vector
\(\rho=\omega_0+\omega_1\) 
killing form
- invariant symmetric non-deg bilinear forms
\(<h_i,h_j>=A_{ij}\)
\(<h_0,d>=1\)
\(<h_1,d>=0\)
\(<d,d>=0\) 
denominator formula
- Weyl-Kac character formula
\({\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho}) = e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}\) 
level k highest weight representation
- integrable highest weight
\(\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1\), \(\lambda_{i}\in\mathbb{N}\) - level
\(k=\lambda_{0}+\lambda_{1}\in\mathbb{N}\) - therefore \(\lambda_{0}\in\{0,1,\cdots,k\}\)
 
central charge
- central charge (depends on the level only)
\(c_{\lambda}=\frac{k}{k+h^{\vee}}\text{dim }\mathfrak{\bar{g}}\) - conformal weight
\(h_{\lambda}=\frac{(\lambda|\lambda+2\rho)}{2(k+h^{\vee})}\) - definition of conformal anomaly
\(m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}\) 
- strange formula
\(\frac{<\rho,\rho>}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\) - very strange formula
 - conformal anomaly 
\(m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(\lambda)}{24}\) 
encyclopedia
- http://en.wikipedia.org/wiki/
 - http://www.scholarpedia.org/
 - http://www.proofwiki.org/wiki/
 - Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
books
- 2010년 books and articles
 - http://gigapedia.info/1/
 - http://gigapedia.info/1/
 - http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
articles
- http://www.ams.org/mathscinet
 - http://www.zentralblatt-math.org/zmath/en/
 - http://arxiv.org/
 - http://www.pdf-search.org/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/
 
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
 - http://ncatlab.org/nlab/show/HomePage
 
experts on the field