"Zamolodchikov's c-theorem"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==correlation functions==
 
==correlation functions==
* $\langle T(z,\bar{z})T(0,0) \rangle =\frac{F(|z|^2)}{z^4}$
+
* <math>\langle T(z,\bar{z})T(0,0) \rangle =\frac{F(|z|^2)}{z^4}</math>
* $\langle \Theta(z,\bar{z})\Theta(0,0) \rangle =\frac{H(|z|^2)}{z^4}$
+
* <math>\langle \Theta(z,\bar{z})\Theta(0,0) \rangle =\frac{H(|z|^2)}{z^4}</math>
* $\langle T(z,\bar{z})\Theta(0,0) \rangle =\langle \Theta(z,\bar{z})T(0,0) \rangle \frac{G(|z|^2)}{z^3\bar{z}}$
+
* <math>\langle T(z,\bar{z})\Theta(0,0) \rangle =\langle \Theta(z,\bar{z})T(0,0) \rangle \frac{G(|z|^2)}{z^3\bar{z}}</math>
  
  
 
==C-function==
 
==C-function==
* $C=2F-G-\frac{3}{8}H$
+
* <math>C=2F-G-\frac{3}{8}H</math>
 
===UV-limit===
 
===UV-limit===
$$
+
:<math>
 
c=-\int_{0}^{\infty}dr \frac{2\dot{C}}{r}=\int_{0}^{\infty}dr \frac{3\dot{H}}{2r}=\frac{3}{2}\int_{0}^{\infty}dr r^3\langle \Theta(z,\bar{z})\Theta(0,0) \rangle
 
c=-\int_{0}^{\infty}dr \frac{2\dot{C}}{r}=\int_{0}^{\infty}dr \frac{3\dot{H}}{2r}=\frac{3}{2}\int_{0}^{\infty}dr r^3\langle \Theta(z,\bar{z})\Theta(0,0) \rangle
$$
+
</math>
  
  
18번째 줄: 18번째 줄:
  
 
==articles==
 
==articles==
* Becker, Daniel, and Martin Reuter. “Towards a $C$-Function in 4D Quantum Gravity.” arXiv:1412.0468 [hep-Th], December 1, 2014. http://arxiv.org/abs/1412.0468.
+
* Becker, Daniel, and Martin Reuter. “Towards a <math>C</math>-Function in 4D Quantum Gravity.” arXiv:1412.0468 [hep-Th], December 1, 2014. http://arxiv.org/abs/1412.0468.
  
  

2020년 11월 16일 (월) 04:33 판

correlation functions

  • \(\langle T(z,\bar{z})T(0,0) \rangle =\frac{F(|z|^2)}{z^4}\)
  • \(\langle \Theta(z,\bar{z})\Theta(0,0) \rangle =\frac{H(|z|^2)}{z^4}\)
  • \(\langle T(z,\bar{z})\Theta(0,0) \rangle =\langle \Theta(z,\bar{z})T(0,0) \rangle \frac{G(|z|^2)}{z^3\bar{z}}\)


C-function

  • \(C=2F-G-\frac{3}{8}H\)

UV-limit

\[ c=-\int_{0}^{\infty}dr \frac{2\dot{C}}{r}=\int_{0}^{\infty}dr \frac{3\dot{H}}{2r}=\frac{3}{2}\int_{0}^{\infty}dr r^3\langle \Theta(z,\bar{z})\Theta(0,0) \rangle \]


expositions


articles

  • Becker, Daniel, and Martin Reuter. “Towards a \(C\)-Function in 4D Quantum Gravity.” arXiv:1412.0468 [hep-Th], December 1, 2014. http://arxiv.org/abs/1412.0468.


encyclopedia