"Quantum modular forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
33번째 줄: 33번째 줄:
 
==computational resource==
 
==computational resource==
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxWmFPWkZTMVdBeDA/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxWmFPWkZTMVdBeDA/edit
 +
 +
 +
==articles==
 +
* Rolen, Larry, and Robert P. Schneider. 2013. “A ‘Strange’ Vector-Valued Quantum Modular Form.” arXiv:1304.1210 (April 3). http://arxiv.org/abs/1304.1210.
 +
* Bryson, Jennifer, Ken Ono, Sarah Pitman, and Robert C. Rhoades. 2012. “Unimodal Sequences and Quantum and Mock Modular Forms.” Proceedings of the National Academy of Sciences 109 (40) (October 2): 16063–16067. doi:10.1073/pnas.1211964109.
 +
* Zagier, Don. 2010. “Quantum Modular Forms.” In Quanta of Maths, 11:659–675. Clay Math. Proc. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2757599.
 +
** http://people.mpim-bonn.mpg.de/zagier/files/qmf/fulltext.pdf
  
  
 
[[분류:Mock modular forms]]
 
[[분류:Mock modular forms]]

2013년 4월 5일 (금) 02:36 판

example

  • unimodular generating function

$$ U(w;q)=\sum_{n=0}^{\infty}(wq;q)_{n}(w^{-1}q;q)_{n}q^{n+1} $$

$$R(w;q)=\sum_{n=0}^\infty \frac{q^{n^2}}{(wq;q)_n(w^{-1}q;q)_n}$$

$$C(w;q)=\frac{(q)_{\infty}}{(wq;q)_{\infty}(w^{-1}q;q)_{\infty}}$$

  • limit formula $\zeta_b=e^{2\pi i/b}$, $1\le a <b$, for every root of unity $\zeta$, there exists an integer $c$ such that

$$ \lim_{q\to \zeta} R(\zeta_{b}^{a};q)-\zeta_{b^2}^{c} C(\zeta_{b}^{a};q)=-(1-\zeta_{b}^{a})(1-\zeta_{b}^{-a})U(\zeta_{b}^{a};\zeta) $$

special case

  • If $b=2$ and $a=1$, then $\zeta_{b}^{a}=-1$
  • $U(-1;\zeta)$ becomes a finite sum if $\zeta$ is a root of unity

$$ U(-1;\zeta)=\sum_{n=0}^{k-1} (1+\zeta)^2(1+\zeta^2)^2\cdots (1+\zeta^n)^2\zeta^{n+1} $$

$$ \lim_{q\to \zeta} f(q)-(-1)^k b(q)=-4\sum_{n=0}^{k-1} (1+\zeta)^2(1+\zeta^2)^2\cdots (1+\zeta^n)^2\zeta^{n+1} $$



related items


computational resource


articles