"Slater 83"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
 (피타고라스님이 이 페이지를 개설하였습니다.)  | 
				|||
| 1번째 줄: | 1번째 줄: | ||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">Note</h5>  | ||
| + | * [[Slater 86]]<br>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">type of identity</h5>  | ||
| + | |||
| + | * [[Slater list|Slater's list]]  | ||
| + | *   <br>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">Bailey pair 1</h5>  | ||
| + | |||
| + | *  Use the folloing<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br>  | ||
| + | *  Specialize<br><math>x=q^2, y=-q, z\to\infty</math>.<br>  | ||
| + | *  Bailey pair<br><math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math><br><math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math><br>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">Bailey pair 2</h5>  | ||
| + | |||
| + | *  Use the following <br><math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math><br>  | ||
| + | *  Specialize<br><math>a=q,c=-q,d=\infty</math><br>  | ||
| + | *  Bailey pair<br><math>\alpha_{0}=1</math>, <math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math><br><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}</math><br>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">Bailey pair </h5>  | ||
| + | |||
| + | *  Bailey pairs<br><math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math><br><math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math><br><math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math><br><math>\beta_n=\frac{1}{(q)_{n}(-q)_{n}}</math><br>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">q-series identity</h5>  | ||
| + | |||
| + | <math>\sum_{n=0}^{\infty}\frac{q^{2n^{2}}}{ (q)_{2n}}=\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}(q^{8};q^{8})_{\infty}(q^{6};q^{16})_{\infty}(q^{10};q^{16})_{\infty}}{(q)_{\infty}}</math>  | ||
| + | |||
| + | <math>(q)_{2n}=(q;q^2)_{n}(q^2;q^2)_{n}</math>  | ||
| + | |||
| + | * [[Bailey pair and lemma|Bailey's lemma]]<br><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><br><math>\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}</math><br>  | ||
| + | |||
| + | * [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>  | ||
| + | ** http://www.research.att.com/~njas/sequences/?q=  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">Bethe type equation (cyclotomic equation)</h5>  | ||
| + | |||
| + | Let '''<br>'''<math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{  | ||
| + |  \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}</math>.  | ||
| + | |||
| + | Then <math>\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a</math>  has a unique root <math>0<\mu<1</math>. We get  | ||
| + | |||
| + | <math>\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})</math>  | ||
| + | |||
| + | |||
| + | |||
| + | a=4,d_1=2.d_2=2,e=1  | ||
| + | |||
| + | The equation  becomes <math>1-x=x</math><math>(1-x^{2})^{2}=x^{4}</math>.  | ||
| + | |||
| + | <math>4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2</math>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">dilogarithm identity</h5>  | ||
| + | |||
| + | <math>L(\frac{1}{2})=\frac{1}{12}\pi^2</math>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">related items</h5>  | ||
| + | |||
| + | * [[asymptotic analysis of basic hypergeometric series]]<br>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">books</h5>  | ||
| + | |||
| + | |||
| + | |||
| + | * [[2010년 books and articles]]<br>  | ||
| + | * http://gigapedia.info/1/  | ||
| + | * http://gigapedia.info/1/  | ||
| + | * http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=  | ||
| + | |||
| + | [[4909919|]]  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>  | ||
| + | |||
| + | *   <br>  | ||
| + | * [http://www.combinatorics.org/Surveys/ds15.pdf Rogers-Ramanujan-Slater Type identities]<br>  | ||
| + | **  McLaughlin, 2008<br>  | ||
| + | * [http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type]<br>  | ||
| + | **  Slater, L. J. (1952),  Proceedings of the London Mathematical Society. Second Series 54: 147–167<br>  | ||
| + | * [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series]<br>  | ||
| + | **  Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475<br>  | ||
| + | *   <br>  | ||
| + | * http://www.ams.org/mathscinet  | ||
| + | * [http://www.zentralblatt-math.org/zmath/en/ ]http://www.zentralblatt-math.org/zmath/en/  | ||
| + | * [http://arxiv.org/ ]http://arxiv.org/  | ||
| + | * http://pythagoras0.springnote.com/  | ||
| + | * http://math.berkeley.edu/~reb/papers/index.html  | ||
| + | * http://dx.doi.org/  | ||
2010년 7월 28일 (수) 02:27 판
Note
type of identity
Bailey pair 1
- Use the folloing
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\) - Specialize
\(x=q^2, y=-q, z\to\infty\). - Bailey pair
\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)
\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\) 
Bailey pair 2
- Use the following 
\(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\) - Specialize
\(a=q,c=-q,d=\infty\) - Bailey pair
\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)
\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}\) 
Bailey pair
- Bailey pairs
\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)
\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)
\(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)
\(\beta_n=\frac{1}{(q)_{n}(-q)_{n}}\) 
q-series identity
\(\sum_{n=0}^{\infty}\frac{q^{2n^{2}}}{ (q)_{2n}}=\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}(q^{8};q^{8})_{\infty}(q^{6};q^{16})_{\infty}(q^{10};q^{16})_{\infty}}{(q)_{\infty}}\)
\((q)_{2n}=(q;q^2)_{n}(q^2;q^2)_{n}\)
- Bailey's lemma
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)
\(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}\) 
Bethe type equation (cyclotomic equation)
Let 
\(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{
 \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\).
Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\) has a unique root \(0<\mu<1\). We get
\(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\)
a=4,d_1=2.d_2=2,e=1
The equation becomes \(1-x=x\)\((1-x^{2})^{2}=x^{4}\).
\(4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2\)
dilogarithm identity
\(L(\frac{1}{2})=\frac{1}{12}\pi^2\)
books
- 2010년 books and articles
 - http://gigapedia.info/1/
 - http://gigapedia.info/1/
 - http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
[[4909919|]]
articles
-  
 - Rogers-Ramanujan-Slater Type identities
- McLaughlin, 2008
 
 - McLaughlin, 2008
 - Further identities of the Rogers-Ramanujan type
- Slater, L. J. (1952),  Proceedings of the London Mathematical Society. Second Series 54: 147–167
 
 - Slater, L. J. (1952),  Proceedings of the London Mathematical Society. Second Series 54: 147–167
 - A New Proof of Rogers's Transformations of Infinite Series
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
 
 - Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
 -  
 - http://www.ams.org/mathscinet
 - [1]http://www.zentralblatt-math.org/zmath/en/
 - [2]http://arxiv.org/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/